APPROXIMATE SYMBOLIC MODEL CHECKING USING
OVERLAPPING PROJECTIONS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Gaurishankar Govindaraju
Angust 2000

DISTRIDUTION STATEMENTA

Approved for Puitic Release 200 2 0 4 1 1 09
Distribution Unlunited

© Copyright 2000 by Gaurishankar Govindaraju
All Rights Reserved

ii

I certify that I have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.

David L. Dill
(Principal Adviser)

I certify that I have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.

Mark A. Horowitz

I certify that I have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Oyekunle A. Olukotun

Approved for the University Committee on Graduate
Studies:

iii

To Amma and Nanagaru ..

vi

Abstract

Bugs in hardware cost money. Whenever an error creeps into a design, time and
money must be spent to locate the problem and correct it. With the growing complex-
ity of digital systems, and the tremendous pressure for early-time-to-market schedules,
the need for verification tools that can help designers catch bugs at an early stage in
the design process cannot be overemphasized.

Traditional methods of verification are empirical in nature and are based on ex-
tensive simulation of hand-written or automatically generated diagnostic test vectors.
Although‘provably effective in the early stages of the debugging process, their effec-
tiveness drops quickly as the size of the state space grows larger. There has been
extensive research on more formal methods based on the use of theorem provers to
comprehensively verify designs. But these techniques are time consuming and often
require a great deal of human expertise to construct a detailed logical proof.

An alternative formal verification approach is model checking, in which efficient
search procedures are used to automatically determine if the state space of a design
satisfies an abstract logical specification. Symbolic model checking extends the scope
of verification problems that can be handled automatically, by using syrhbolic rep-
resentations with binary decision diagrams (BDDs) rather than explicitly searching
the entire state space of the model. However, even the most sophisticated symbolic
model checking methods cannot be directly applied to many of today’s large designs.
Approzimate symbolic model checking is an attempt to trade off accuracy with the
capacity to deal with bigger designs. This work explores the idea of using a new

approximation scheme called overlapping projections.

Under this new approximation scheme, the state space is represented using a

vil

collection of BDDs that constrain possibly overlapping subsets of the state variables
in the system. This new scheme is more general and significantly better than earlier
approximation schemes.

The ideas are evaluated on publicly available benchmarks from the ISCAS-89
benchmark suite. We report orders of magnitude improvement in the results obtained
when compared with earlier schemes. The ideas are also applied to extensively verify
a real large design example from the I/O unit of the MAGIC chip in the Stanford
FLASH multiprocessor.

viii

Acknowledgments

Interdependence is a higher value than independence. — Stephen R. Covey.

It is indeed hard to do justice here and acknowledge the help and contribution of all
the people, without whose encouragement and support this thesis would have never
seen the light of the day. I can only thank in one blanket statement, all those whom I
have had the pleasure of interacting with during the course of my education. You have
all enriched my life in so many ways and made it so worthwhile. I will nevertheless
attempt to list as many as I can remember. Please forgive any errors of omission. I
feel a deep sense of gratitude:

e to my advisors, Prof. David L. Dill and Prof. Mark A. Horowitz. Dave’s open-door
policy for his graduate students has helped me to sample his opinion and views on
the many rough ideas I started with. Dave devotes considerable time and energy
to his students, and many of the ideas in this thesis originated from the lengthy
brainstorming sessions I had with him. His insistence on continually testing one’s
ideas on practical, real designs has helped refine this thesis. Finally, his.patience,
humor, good advice (research and otherwise) and friendship have made my graduate
studies at Stanford very enriching and a lot of fun.

e to the other reading committee members: Prof. Mark Horowitz and Prof. Kunle
Olukotun, who read drafts of this thesis quickly and carefully. Their suggestions have
helped bring more clarity to this dissertation.

e to my parents, for their constant support, encouragement and prayers. Even though
there are no formal degrees awarded for the kind of things I learned from them, I

ix

am convinced that the things they taught me have helped me in every step of my
education over the years. My brothers, sisters, nephews, nieces and siblings-in-law
have always given me the hope and support that made this work possible.

e to people from the FLASH team. In particular I would like to thank Hema Kapadia
and Jules P. Bergmann. Hema was the chief designer of the I/O unit in the MAGIC
chip. I cannot overemphasize how indebted I am to her for her patience and speedy
response to the innumerable questions I have asked her over the years. Jules was the
ideal bouncing board to help refine many of the ideas in this thesis. Furthermore,
one of the CAD tools that he developed at Stanford, called vez [4], was instrumental
in helping me to conduct my research.

e to my fellow graduate students from Dave’s research group. In particular, Han Yang,
Jules Bergmann and I would meet regularly in “core-dump” meetings to thrash out
recent papers and ideas.

e to my friends from ASHA Stanford, who are doing very good volunteer work in
order to help alleviate the problem of illiteracy in rural India. Interacting with these
motivated people has helped me to adopt some of their enthusiasm in other facets of
life too.

e to my friends from my tennis league: Craig April, Jay Borenstein, Russ Garber,
Victor Lam, Laurent Pierrot... You have all helped make my weekends so much fun
here. Tennis has provided balance and well-roundedness to my life here at Stanford
as a graduate student.

e to Charlie Orgish and Thoi Nguyen. No research work in the Computer Systems
Laboratory at Stanford would ever be possible without the timely help from these
super-efficient and capable system administrators. '

e to the funding agencies that sponsored this research. This work was supported
by DARPA contracts DABT63-94-C-0054, DABT63-96-C-0097 and GSRC contract
SA2206-23106PG-2.

e to Deborah Harber for proofreading this thesis. Thanks to her, at least some of the
sentences in this thesis are now free of grammatical errors. Any left over grammatical

errors are solely my fault.

Contents

v
Abstract vii
Acknowledgments ix
1 Introduction 1
1.1 Motivation for Verification Tools. 1
1.2 Verification Methods o oo 3
1.2.1 Empirical Methods oo 3

1.2.2 FormalMethods. 4

1.3 Formal Verification Methods 4
1.3.1 Theorem Proving oo 5

1.3.2 Model Checking and Language Containment 5

1.4 Model Checking: Better Choice in Industrial Settings 6
1.5 The Flow of Model Checking 8
1.6 Why Approximate Symbolic Model Checking? 9
1.7 Scopeofthe Thesis 10
1.8 Contributions and Results of the Thesis 11
1.9 Overviewofthe Thesis 12

2 Preliminaries 15
2.1 Boolean Functions 15
2.2 Binary Decision Diagrams 0. 17

xi

2.2.1 Ordering and Reduction 18

2.2.2 Effects of Variable Ordering 19
2.2.3 Intuition on BDD Variable Ordering 22
2.3 Modeling Synchronous Hardware with BDDs 23
2.4 Symbolic Reachability Algorithms 26
2.5 Constrain Operator i 28
2.5.1 Definition of Constrain e e e e e e e e 28
2.5.2 Properties of Constrain o 29
2.6 Appendix 30
2.6.1 A Simple Tutorial on Symbolic Model Checking 30
Approximation by Overlapping Projections 33
3.1 Why Approximate Methods? 33
3.2 Approximation by Overlapping Projections 36
3.2.1 Definitions and Theory 36
3.2.2 Why Overlapping Projections? 43
3.2.3 Projections vs Partitions 44
3.3 Related Work o o i e e 46
34 Conclusions v v v i i e e e e e e e e e e 47
3.5 Appendix: Galois Connections 47
3.5.1 Typical Applications of Galois Connections 49
3.5.2 Overlapping Projections as a Galois Connection 50
Approximate Forward Reachability 51
4.1 Basic Algorithm 51
4.2 Methods to Compute Images 52
4.2.1 Transition Relation Approach 52
4.2.2 Transition Function Approach 55
4.3 Computing Im,, by Multiple Constrain 58
4.3.1 Multiple Constrain Algorithm 63
44 Optimizations o e e 63
4.5 Choosing the Collection of Subsets 64
xii

4.5.1 Leveraging High level Information 64

4.5.2 Structural Methods for Gate Level Net-lists 65
4.6 Experimental Results 66
4.6.1 Results on Design Examples from FLASH 67
4.6.2 Results on ISCAS-89 Benchmark Circuits 70
4.7 ConcluSions . . v v v v o i e e e e e e e e e e e 71
48 Appendix e e e e e e e e e e e e 72
4.8.1 Approximating Sat_Frof Superset 72
Approximate Backward Reachability 75
51 Basic Algorithm o o 75
5.2 Methods to Compute Pre-images 7
5.2.1 ‘Transition Relation Approach 7
5.2.2 Function Substitution Approach 78
5.3 Computing Pregy by Domain Cofactoring 79
5.4 Combining Forward/Backward Reachability 82
5.5 Optimizations e 84
5.6 Counterexamples v v i it 84
5.7 Experimental Results 86
58 Conclusions o i it i e e e e e e e 89
59 Appendix e e 90
5.9.1 Deterministic Relations. 90
5.9.2 Satisfiability Check with Multiple Constrain 92
Auxiliary State Variables | 93
6.1 Using Internal Abstractions 93
6.1.1 KeyIntuition 94
6.1.2 Example to Illustrate Power of Auxiliary Variables 94
6.1.3 Related Work« ... i 96
6.2 Converting Internal Wires to Auxiliary State Variable 96
6.2.1 Next State Function for Auxiliary Variables 96
6.2.2 Initial Condition for Auxiliary Variables 98

xiii

6.3
6.4

6.5
6.6

Heuristics to Choose Auxiliary State Variables
Experimental Results
6.4.1 Results on Design Examples from FLASH
6.4.2 Results on ISCAS-89 Benchmark Circuits
Conclusions v v v v i i e e e e e e e e e e e
Appendix e e e h e e e et ae e s e
6.6.1 Sat_Fr of Superset for FLASH I/O circuits

7 Counterexamples

7.1
7.2
7.3

7.4

7.5

7.6

Introduction e e
Related Work e
Hybridization e
7.3.1 How do Bogus States Creepin?
7.3.2 Intuition to Removing Bogus States
Hamming Distance Heuristic
7.4.1 Computationof Land Po
7.4.2 Features of the Hamming Distance Heuristic
Experimental Results
7.5.1 Proving Safety Properties on PCI Interface Unit
7.5.2 Proving Global Safety Properties on FLASHI/O

ConcluSions v v i e

8 Conclusions

8.1 Key Technical Contributions
82 KeyResults e
8.3 Possible Future Work
8.3.1 Better Under-approximations
8.3.2 Combining with Other Abstractions
8.3.3 Extension to Liveness Properties
8.4 DiISCuSsion e e e e e e e e e e e e
Bibliography

xiv

104
104

107
107
108
109
110
111
113
116
116
117
119
121
123

125
126
126
127
127
127
128
128

131

List of Tables

2.1
2.2
2.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3
6.4
6.5

Examples of Boolean functions.
Quantifiers and substitution00

Complexity of BDD algorithms

I0InboxQCtl design example results
ReqDecode design exampleresults
RegService design exampleresults
IOMiscBusCtl design example results
Pcilnterface design example results
Large circuits from ISCAS-89 benchmark suite
ISCAS 89 benchmarks: Size of approximate forward reachable set . .

Control modules in I/O unitin FLASH
Proving IOInboxQCt!l invariants
Proving RegDecode invariants
Proving RegService invariants
Proving IOMiscBusCtl invariants

Proving Pcilnterface invariants.

Control modules in I/O unit in FLASH P
I0OQ_ReqD: Size of approx. reachable set with auxiliary variables. . .
ReqS_ReqD: Size of approx. reachable set with auxiliary variables . .
Pcilnterface: Size of approx. reachable set with auxiliary variables . .
Auxiliary variables added to ISCAS 89 circuits

Xv

86
87
87
88
88
89

101
101
102
102

6.6

7.1
7.2

ISCAS 89 circuits: Size of approximate reachable set with auxiliary

VaTiables o e

Proving safety properties on PCI interface unit.
Proving global properties on FLASHI/O

xvi

List of Figures

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1

6.1
6.2
6.3

7.1
7.2
7.3

Representing Boolean functions 17
Transformations toget ROBDDs 19
Effects of variable ordering 20
Modeling a synchronous circuit with BDDs 24
Simple finite state machine oo 0oL 31
Concretization of projection of R is a superset of R 37
Geometric interpretation of join operator (L) 39
Geometric interpretation of Imgy : (S1,S2) = Imep((R1, R2),n) 40
Geometric interpretation of Pregy : (S1,S2) = Preg((Ry, Re),mn) . . . 41
Capturing interaction b/w FSMs with overlapping projections 44
Quality of result vs memory requirement tradeoff curve 45
Intuition to multiple constraino 62
IOMiscBusCtl: Projections vs Partitions 69
Counterexample generation from approximations. 8
Example to illustrate potential of using auxiliary variables 95
Typical design o 97
Design including auxiliary state variables 99
Counterexample generation from approximations. 109
Hybridization effect induced by projections 110
Refinement through Hamming distance heuristic 112

xvii

7.4 Case 1: Hamming distance heuristic to remove bogus states

7.5 Case 2: Hamming distance heuristic to remove bogus states

7.6 PCI design example

xviii

Chapter 1

Introduction

It is widely agreed that the main obstacle to “help computers help us more”
and relegate to these helpful partners even more complex and sensitive tasks
is not adequate speed and unsatisfactory raw computing power in the ez-
isting machines, but our limited ability to design and implement complex
systems with sufficiently high degree of confidence in their correctness under

all circumstances. — Amir Pnueli.

This thesis presents a new approach for the formal verification of digital systems.
This chapter motivates the need for verification tools as an aid to the design of
digital systems. It provides basic background on existing methods and explains why
approximate model checking is an appropriate approach for today’s large industrial
designs. Finally, there is a note on the scope, the main contributions and the results
of this thesis.

1.1 Motivation for Verification Tools

Consider the following interesting developments in the electronics industry:

e Since the first integrated digital circuit, we have witnessed a continuous growth

1

2 CHAPTER 1. INTRODUCTION

in the complexity of digital circuits that are designed and fabricated. In par-
ticular, Moore’s law [55, 56], which states that the number of transistors on a
chip will double every eighteen months, has roughly withstood the test of time
for the last 35 years.

e In the midst of the growing complexity of these designs, there is also a tremen-

dous pressure to get early time-to-market schedules to maintain business com-

petitiveness.

This leads to the need for tools that can give a quantum jump in designer productivity,
enabling him or her to correctly design even more complicated systems in lesser time.
In order to enable the designer to work at a much higher level of productivity, the
focus of the design effort has moved towards higher abstraction levels. This move is
made possible by the introduction of a slew of computer-aided design (CAD) tools
that automate the design process at lower levels of abstraction.

Consider the effects of this boom in the electronics industry:

e There is a ubiquitous invasion of hardware systems into our daily lives. Em-
bedded systems inside automobiles, airplanes, cell phones efc. are critical parts

of our daily lives now.

e With the success of the Internet and embedded systems in general, we can

expect our daily lives will be more increasingly dependent on such systems.

A direct consequence of this tight coupling of our daily lives with electronic systems
is that it becomes imperative that they function correctly under all scenarios, and
their correctness is ensured before they are allowed to be a part of our daily lives.
The disastrous effects of having a faulty chip in an embedded system inside an auto-
mobile or an airplane are obvious. Such safety critical applications require absolute
guarantees of correctness (though in practice, they are a long way from absolute).
Apart from such safety critical applications, electronic goods like computers are
slowly becoming a common tool in the average home. Computers and electronics
inside home appliances need to be bug-free, or else the financial cost is often pro-

hibitively expensive. For example, the Pentium floating point division bug cost Intel

1.2. VERIFICATION METHODS 3

corporation [43] close to half a billion dollars [37]. An earlier detection of the bug
would have saved Intel corporation from this huge financial loss and also the asso-
ciated public relations fiasco. Another less famous example is a disk drive problem,
which cost Toshiba corporation [65] nearly a billion dollars. The importance of de-
veloping tools that enable the detection and elimination of bugs early in the design
cycle cannot be overemphasized.

Thus we see a utopian demand for higher productivity and bug-free designs. Tools
that can allow designers to work at higher levels of abstraction take care of the high
productivity demand. Verification tools that can help a designer catch bugs at an

early stage in the design process help meet the bug-free requirement.

1.2 Verification Methods

Existing methods for verification of digital systems can be classified generally as being
empirical or formal. We briefly discuss these methods here.

1.2.1 Empirical Methods

Empirical verification methods attack the problem of design verification by generating
and applying tests to a model of the design. The effect of the input tests is then
simulated in the model. To simulate a design description, one needs to have rules
defining how the statements in the description should be interpreted and executed.
Empirical methods do not attempt to prove correctness of a design and produce a
yes/no answer, but rather to derive a level of confidence that the design is free of
any obvious errors. The effectiveness of empirical methods depends directly on the
effectiveness of the meirics used to grade the quality of the tests. Several coverage
metrics like line coverage, basic block coverage, toggle coverage, state coverage, tag
coverage [25] etc. have been proposed, but it is not clear which metric would be most
effective in exposing design errors.

Although empirical methods are provably effective in the very early stages of the

4 CHAPTER 1. INTRODUCTION

debugging process (when the design is still infected with multiple bugs), their effec-
tiveness drops quickly as the design becomes cleaner, and they require an alarmingly
increasing amount of time to uncover the more subtle bugs. Hence, there is an in-

creasing interest in more formal methods.

1.2.2 Formal Methods

Formal verification methods aim at establishing that an implementation satisfies a
specification. The term #mplementation refers to a model of the design to be verified,
while the term specification refers to a more abstract model or a property with respect
to which the correctness is to be determined. One can ponder endlessly on the
philosophical impossibility of proving a system is correct: Is the specification correct?
Is the model accurate? Is the verifier correct? Is the computer used to run the verifier
correct? Cohn [17] gives a very good analysis of the fundamental obstacles to proving
a hardware design correct. However, under the assumption that the model is indeed
representative of the actual design, and the assumption that the specification is a
golden reference model, formal verification techniques can be applied.

A formal model of the underlying design with a precisely defined meaning, enables
the application of mathematical proof techniques. This model can be expressed in a
variety of mathematical formalisms. Examples of formalisms at the behavioral level
are data flow graphs, process algebras and higher order logics, while at the lower
levels, finite state machines and switch level models are often used. The design can
be modeled directly in one of these formalisms, or a formal model can be constructed

from a design description in a hardware description language.

1.3 Formal Verification Methods

Formal verification methods are often divided into the two categories of theorem
proving and model checking. We will discuss these in turn. More comprehensive

surveys of formal verification methods can be found in [35].

1.3. FORMAL VERIFICATION METHODS 5

1.3.1 Theorem Proving

Theorem proving (also referred to as deductive verification) is an approach to verifi-
cation where the verification problem is described as a theorem in a formal theory.
A formal theory consists of a language in which the formulas are written, a set of
axioms and a set of inference rules. The inference rules are syntactic transformation
rules for the formulas. With these rules and axioms, theorems can be proved.

However, theorem proving is a time—coﬂsuming process that can be performed only
by those who are educated in logical reasoning and have considerable expertise. This
lack of automation makes its usage rare and limited to guaranteeing the correctness
of safety critical systems and protocols.

The advantage of this method is it gives one the ability to reason about infinite
state systems, and enables one to éheck for complex correctness conditions in such
large systems. Furthermore, theorem provers also support powerful techniques, such
as proof by induction, and they allow the direct verification of parameterized designs
without having to instantiate the parameters. However, there is no bound on the

time or memory that may be needed to find a proof.

1.3.2 Model Checking and Language Containment

Model checking and language containment are methods to check properties of a design,
where the properties are specified respectively as temporal logic formulas [58] and w-
automata [64]. For finite state models, these methods can be fully automated.

However, in practical applications the size of the model often constitutes a major
limitation. To keep the size of the model tractable, a compact model is chosen which
abstracts away the details that are irrelevant to the property that has to be checked.
The selection of a suitable abstraction is typically not automated, because many
abstractions only weakly preserve the properties of the design, i.e., if a property is
not valid in the abstract model, it can still hold in the exact model. More information
on abstraction techniques can be obtained from [14, 49, 20].

A well known academic tool for model checking is SMV [51], developed at Carnegie
Mellon University. It supports symbolic model checking of temporal logic formulas.

6 CHAPTER 1. INTRODUCTION

The term symbolic means that the finite state model is not stored explicitly, but in-
stead it is represented as binary decision diagram (BDD) [6]. This is a popular data
structure for representing Boolean functions, and is used in many automated verifica-
tion tools. Another academic tool, which supports both model checking and language
containment is VIS [5]. It is a BDD-based environment for design verification, de-
veloped at the University of California, Berkeley. Some successful applications on
industrial designs [24] have been reported for verification methods based on symbolic

model checking.

1.4 Model Checking: Better Choice in Industrial
Settings

There are a number of requirements which a formal verification method must meet
in order to be valuable in an industrial design environment. Eijk [23] provides a good
listing of desirable parameters of a verification tool. An obvious requirement is that
the method should be correct. In each of the requirements mentioned below, model
checking appears a more appropriate match (compared to theorem proving) in an

industrial setting.

e Automation

To minimize the required amount of user guidance, a formal verification method
must provide a high degree of automation. Model checking is more amenable
to automation than theorem proving, and its application requires no user su-
pervision or expertise in mathematical disciplines such as logic and theorem
proving.

Note that the desire to have methods with a high degree of automation does not
mean that a tool should not provide options for the user to guide the verification
process. Even for fully automated tools, a small amount of user guidance can

sometimes result in a significant increase in performance.

e Error Diagnosis

1.4. MODEL CHECKING: BETTER CHOICE IN INDUSTRIAL SETTINGS 7

When an error is detected in a design description, the verification method must
help the designer in locating the error. It should at least be able to produce a
pattern of input stimuli which forms a counterexample for the property being

verified.

e Predictable Performance ,,
A formal verification method must be able to handle designs of industrial com-
plexity. The keywords are efficiency and predictability. Since formal verification
methods are typically computationally extensive, it is difficult to meet the effi-
ciency requirements. The performance of a formal verification tool must degrade
gracefully with increasing design size. Small changes in the design should not
have a major negative impact on the performance of the verification method. It
is also important that the performance is predictable. Before a specific phase of a
design project is started, it should be possible to predict if a specific verification
method will be able to handle the design or not. In this regard, neither theorem
proving nor model checking do well enough, but there is growing evidence [24]
of in-house model checkers being developed in most advanced semiconductor

processor manufacturing companies.

e Seamless Integration in the Design Flow
To make a verification method convenient to use, it is necessary to tightly
integrate it with the design environment. It should be possible to use the same
description for simulation and formal verification. A verification method should
be able to handle the design styles used in the implementation, and also handle
the hardware design description languages used to describe the designs and the
cell libraries.

Model checking’s support for automation and error diagnosis give it an advantage

over theorem proving, at least in an industrial setting.

8 CHAPTER 1. INTRODUCTION

1.5 The Flow of Model Checking

Applying the model checking technique typically is a three stage process. (For a
more detailed analysis on the application of model checking, Clarke et al. [15] is an

excellent source.)

e Modeling: The first task is to convert a design into a formalism accepted and
understood by a model checking tool. In many cases, this is simply a compilation
task. In other cases, owing to constraints on time and memory, the modeling

process may require abstraction to eliminate irrelevant and unimportant details.

e Specification: Before verification, it is necessary to state the correctness prop-
erties that the design must satisfy. The specification is usually given in some
logical formalism. For hardware systems, it is common to use temporal logic [58],
which asserts how the behavior of the system evolves over time. An important
issue in specification is completeness. Model checking provides means for check-
ing that a model of the design satisfies a given specification, but it is impossible
to determine whether the given specification covers all the properties that are

required for the correct functioning of the system.

e Verification: The state space of the model is systematically explored. If all
the reachable states satisfy the property being checked for, we are done. Oth-
erwise, if any states violating a user defined temporal property are visited, a
counterexample trace from the initial states to such error states is presented.
After inspecting the counterexample, a designer then makes appropriate mod-
ifications to the design, and the model checking exercise is repeated. A final
possibility is that the verification task will fail to terminate with a yes/no an-
swer, due to memory size restrictions. In this case, it may be necessary to re-do
the verification exercise after changing some of the parameters of the model (i.e.

by using additional abstractions).

Given the exponential growth rate of the number of states with the number of
state variables, the third step in this flow may appear inefficient since it requires

exhaustive exploration of the state space. However, with the advent of symbolic

1.6. WHY APPROXIMATE SYMBOLIC MODEL CHECKING? 9

model checking [51], which allows exhaustive implicit enumeration of an astronomic
number of states, it has completely revolutionized the field of formal verification and

transformed it from a purely academic discipline into a practical technique.

1.6 Why Approximate Symbolic Model Checking?

The key data structure used in symbolic model checkers is a BDD (Binary Decision
Diagram) [6]. More details on BDDs are in chapter 2; however, for the moment, it
suffices to say that it is a data structure for representing Boolean functions.

Binary Decision Diagram (BDD) [6] has proved to be a viable data structure
for doing symbolic reachability on large hardware designs. However, for many large
design examples, even the most sophisticated BDD-based verification methods cannot
produce exact results. This is because the size of the intermediate BDDs, while
computing the reachable state space with exact symbolic model checking algorithms,
blows up well beyond the memory capabilities of most machines. The blowup of
BDDs happens because of the large number of state variables in today’s designs,
which results in the intermediate BDDs in exact symbolic model checking algorithms
that have a large number of variables in their support. As a rough rule of thumb,
BDDs with large support sets are more likely to suffer from size explosion problems
than those with smaller support sets.

One alternative is to trade accuracy for BDD size requirements, by using approx-
imate verification algorithms. This thesis exploits the key intuition that BDDs with
smaller support sets are less likely to blow up. In our approximation scheme, the
number of variables in the support of the various BDDs is restricted and.controlled
so as to keep the BDD sizes well behaved.

More formally, the approximation scheme proposed in this thesis is based on
overlapping projections of sets of states. A set of states, given by a BDD S(x), is
instead represented by a list of BDDs, each element of the list constrains possibly
overlapping subsets of the variables in support of S, i.e. x. The projection of a
set S(x) of bit vectors onto a set of one-bit variables, w; (where w; C x), is the

larger set of bit vectors that match some member of S for all the variables in w; (the

10 CHAPTER 1. INTRODUCTION

values of the other variables are ignored). S(x) can be approximated by projecting
it onto many different subsets of the state variables, and considering S,y to be the
intersection of all the projections. The approximation scheme guarantees that the
relation S C S,, holds. Since each of the projections has restricted support from
within w;’s (note w; C x), they are more robust and less likely to suffer from BDD
size blowup problems.

Even though there is some loss of informatior. in any approximation scheme, ap-

proximate verification algorithms can often yield useful results. For example:

e Say we are interested in checking if a property holds in every reachable state.
Let a BDD S represent the set of reachable states, and S, be a superset of
S. Although S, is a larger set than S, the BDD for S,p may have a smaller
representation, so the computation of S,, may be more efficient than S. If
every state in S,, satisfies the property, we can be sure that every state in S

also satisfies the property. Hence, a sufficiently accurate approximation can

yield a useful result.

e Say we are interested in checking if certain error states are reachable. Let a
BDD R represent the set of states that can reach the error states, and Rop
represent a superset of R. Once again, even though Ry is a larger set than R,
the BDD for R,, may have a smaller representation, so the computation of Ry,
may be more efficient than R. If none of the initial states are included in R,

we can safely conclude that the error states are surely unreachable.

The key observation that makes such approximate approaches useful is that any
required property of a design rarely relies on every implementation detail of the design.
Therefore, approximate verification algorithms which retain sufficient information

may yield useful results while handling larger designs.

1.7 Scope of the Thesis

This thesis develops and implements a theory for practical automatic verification

of synchronous hardware designs. Hardware designs are typically partitioned into

1.8. CONTRIBUTIONS AND RESULTS OF THE THESIS 11

datapath and control portions. The datapath portion typically involves manipulating
and steering data from one end of the chip to the other. The control portion decides
how and in which direction the data gets steered. The ideas in this thesis are primarily
evaluated on the control portion of hardware designs. The underlying assumption here
is that more often than not, subtle corner-case bugs reside in the intricate control parts
of a design rather than the more structured datapath.

In hardware verification, a distinction is usually made between two kinds of proper-
ties: safety properties and liveness properties. A safety property asserts that “nothing
bad happens”, while a liveness property asserts “something good eventually happens”.
An example of a safety property is “no more than one agent drives a shared bus at
any time”. An example of a liveness property is “if an agent wants to drive the bus
and waits long enough, he will eventually be granted the bus”. This thesis focuses on
proving safety properties in a hardware design. The conservative over-approximation

paradigm of this thesis is amenable for only verifying safety properties.

1.8 Contributions and Results of the Thesis

In short, this thesis presents a new method to compute reasonably accurate over-
approximations (superset) of the reachable state space and doing approximate model

checking. Specifically:

e Ouerlapping Projections: A new approzimation paradigm: Under this paradigm,
the state space is represented using a collection of BDDs which constrain pos-
sibly overlapping subsets of the state variables of the system. This new scheme
of approximation is more general and significantly better than earlier approxi-
mation schemes which required the use of disjoint subsets of the state variables.
Allowing even a few overlap bits makes it possible to capture the interaction
between finite state machines at a much lower cost (in terms of memory and

time) than earlier schemes.

e Efficient Reachability Operators for Overlapping Projections: Under this ap-
proximation scheme, an efficient algorithm to compute a tight superset of the

12 CHAPTER 1. INTRODUCTION

set of states that can be reached from the initial states is presented. An efficient
algorithm to compute a tight superset of the set of states that can reach some

error states (states that violate a user-defined safety property) is presented.

o Auziliary State Variables to get Better Approzimations: Sometimes the critical
communication between state machines happens through wires hidden deep
inside the combinational logic. There may not be any state variable explicitly
capturing the information inside these internal critical wires. The notion of
auxiliary state variables is introduced to capture the information embedded in
these critical wires. Using these auxiliary state variables along with the usual

state variables enables computing tighter supersets of the reachable state space.

e Automatic Refinement and Counterezample Generation: In the cases where the
model checker is unable to prove the safety property, a simple heuristic to gener-
ate counterexamples is presented. In the case where the counterexample cannot
be completed in lieu of the approximation, hints are automatically provided on
how the choice of subsets can be improved to further refine the approximation,

so as to either facilitate a counterexample or a proof of the property.

These ideas were evaluated on publicly available benchmark circuits from the
ISCAS-89 suite. We report orders of magnitude improvement in the results obtained
when compared with the earlier schemes. The ideas are also evaluated on a real large
design example from the FLASH [45] Multiprocessor. In particular, the I/O unit of
the MAGIC chip in the FLASH Multiprocessor was extensively verified.

1.9 Overview of the Thesis

Chapter 2 introduces some preliminaries on logic manipulation. In particular, it
explains BDDs and the constrain operator, both of which are heavily used in this
thesis. '

Chapter 3 briefly reviews some of the related work in the context of approximations

in model checking. A formal analysis of approximations incurred with overlapping

1.9. OVERVIEW OF THE THESIS 13

projections is presented, and its place in the world of approximations is elaborated
upon.

Chapter 4 describes efficient algorithms to compute approximate successors of
a set of states. The quality of approximation is highly dependent on the choice
of projections. The heuristic used to guide the choice of projections is presented.
The intuitive rationale behind the heuristic is presented. The results obtained by
applying this algorithm to compute a superset of the reachable state set of different
design examples are presented.

Chapter 5 describes efficient algorithms to compute approximate predecessors of a
set of states. The results obtained by applying this algorithm to compute a superset of
the states that can reach error states (states violating a user specified safety property)
are presented.

Chapter 6 introduces the notion of auxiliary state variables and how they can
enable even more refined reachability. The results obtained by applying the technique
to various design examples are presented.

Chapter 7 focuses on our scheme of generating counterexamples from the ap-
proximations. Since we compute supersets, the approximation ends up with a tube
that has a set of paths. All possible counterexample paths must lie inside the tube.
Searching for a counterexample in this approximate tube is liable to failure because
of the loss of information incurred while choosing the projections. In case of a failure,
automatic hints are provided on how the choice of projections can be improved to
either facilitate a genuine counterexample or proof of the property.

Finally in chapter 8, we draw some conclusions, present a summary of the thesis

and discuss possible future work.

14

CHAPTER 1. INTRODUCTION

Chapter 2
Preliminaries

Boolean algebra is the basic mathematical tool for reasoning about digital systems.
This chapter introduces some basic definitions of Boolean functions. Binary decision
diagram (BDD), a popular data structure to represent Boolean functions is intro-
duced. This chapter further elaborates on how BDDs can be used to model digital
systems and how they are used to solve simple verification problems. Finally, there
is a discussion of the constrain operator. The constrain operator tries to reduce the
BDD for a given function relative to another BDD representing the care set. BDDs
and the constrain operator are heavily used for many of the verification algorithms

presented later in this thesis.

2.1 Boolean Functions

In a digital circuit, information is represented in binary form. The two discrete values
are denoted as 0 and 1. A Boolean function is an expression. A simple expression
consists of one of the constants 0 or 1, or it consists of a variable. More complex
expressions can be obtained by negating a simple expression, or by combining two
simple expressions with a binary operator. There are three basic binary operators:
the logical AND operator, denoted by A, the logical OR operator, denoted by V,
and the logical NOT operator, denoted by a — or a bar over the negated expression.

From these three basic operations, other common operations can be derived. Some

15

16 CHAPTER 2. PRELIMINARIES

examples are shown in Table 2.1.

Table 2.1: Examples of Boolean functions

Function Notation Definition
exclusive-or (XOR) | f@g |[(fA-g) vV (=fAg)
equivalence (XNOR) | f=g |(fAg) V (=fA-g)

implication f—=g -f V g

If all the variables in a function are chosen from a set x, then the function is
said to be a function over x. The support of a function f is the set of all variables
occurring in f, and is denoted by supp(f).

Let B = {0,1}. A Boolean function is a mapping from B" to B, with n > 0. The
positive cofactor of a Boolean function f with respect to a variable a is the function
that is obtained by replacing every occurrence of a in f by the constant 1, and is
denoted by f,. Similarly, the negative cofactor of f with respect to a is the function
obtained by replacing every occurrence of a by the constant 0, and is denoted by fz.

The following identity holds for every Boolean function:
f=(aAfo)V(maA f3)

This is known as the Shannon expansion of f, and forms the basis for many
BDD based manipulations of Boolean functions. Cofactors are also used to define

(Table 2.2) some common operations for quantifiers and substitution.

Table 2.2: Quantifiers and substitution

Function Notation Definition
existential quantification | da - f fo V fa
universal quantification Ya- f fo N fa

substitution flagl | (@Af) V (mgAfa)

2.2. BINARY DECISION DIAGRAMS 17

xl x2 x3| £

1 1 010 < i

caala] o [R][[]
Truth Table Decision Tree representing the function £f.
(A dashed (sclid) branch denotes 0(1) branch)

for function f

Figure 2.1: Representing Boolean functions

2.2 Binary Decision Diagrams

Binary Decision Diagram (BDD) is a data structure suitable for representing binary
functions. Bryant [6] proposed this representation by imposing restrictions on the
representation first introduced by Lee [46] and Akers [2], such that the resulting form
is canonical. They are often substantially more compact than traditional represen-
tations such as truth tables, conjunctive normal form and disjunctive normal form.
Furthermore, they can be manipulated very efficiently. Hence, they have become
widely used for a variety of CAD applications.

In particular, BDDs represent a Boolean function as a rooted, directed acyclic
graph. As an example, Figure 2.1 illustrates a representation of the Boolean function
f(z1, z2,73) defined by the truth table given on the left, for the special case where the
graph is actually a tree. Each nonterminal vertex v is labeled by a variable var(v) and
has two children: else(v) (shown as a dashed line) corresponding to the case where
the variable is assigned the value 0, and then(v) (shown as a solid line) corresponding
to the case where the variable is assigned the value 1. Each terminal vertex is labeled
0 or 1. For a given assignment to the variables, the value yielded by the function
is determined by tracing a path from the root to a terminal vertex, following the

branches indicated by the values assigned to the variables. The function value is then

18 CHAPTER 2. PRELIMINARIES

given by the terminal vertex label.

2.2.1 Ordering and Reduction

An Ordered BDD (OBDD), has a total ordering < over the set of variables. For
any vertex u, and either nonterminal child v of u, their respective variables must
be ordered as var(u) < var(v). In the decision tree of Figure 2.1, for example, the
variables are ordered z; < 73 < 3. |

We further need three transformation rules over these graphs that do not alter
the function represented, but result in more compact and canonical representations

of the functions.

e Remove Duplicate Terminals: Choose a representative terminal vertex for
the constant 0 and one representative terminal vertex for the constant 1. All
arcs going into a terminal O vertex are directed into the representative termi-
nal O vertex, and similarly all arcs going into a terminal 1 vertex go to the

representative terminal 1 vertex.

e Remove Duplicate Nonterminals: If nonterminal vertices u and v have
var(u) = var(v), else(u) = else(v), and then(u) = then(v), then eliminate
one of the two vertices and redirect all incoming arcs to the other vertex. This
results in isomorphic subgraphs within the tree being shared. It is this sharing
property that enables BDDs be a compact representation for many Boolean

functions.

e Remove Redundant Test: If nonterminal vertex v has else(v) = then(v),

then eliminate v and direct all incoming arcs to else(v).

Starting with any BDD satisfying the ordering property, we can reduce its size by
repeatedly applying the transformation rules. We use the term “ROBDD” to refer to a
maximal reduced graph that obeys some ordering. For example, Figure 2.2 illustrates
the reduction of the decision tree shown in Figure 2.1. Note that on applying the
first transformation, the number of terminal nodes are reduced from eight to two,

and then the number of nonterminal vertices are reduced by two after the second

2.2. BINARY DECISION DIAGRAMS 19
A) Eliminate B) Eliminate C) Eliminate
Duplicate Duplicate Nonterminals Redundant Tests
Terminals

e’ x1
> ;i
. . ,
’ s .
. . ’
. . .
. , ,
¢ ‘ .
/= E
’
'
! [l
/ .
'

0 1

Figure 2.2: Transformations to get ROBDDs

transformation. On application of the third transformation rule another two vertices
are eliminated. Since we will always be using this data structure in its ordered and
reduced form, unless otherwise mentioned, henceforth we will use the term BDD to
mean ROBDDs.

The resulting representation of a function is canonical, i.e. for a given ordering,
two BDDs for the same function are isomorphic. This property has several important
consequences. Functional equivalence can be easily tested. A function is satisfiable iff
its BDD representation is not the terminal vertex labeled 0. Any tautological function
must have the terminal vertex labeled 1 as its BDD representation. If a function is
independent of a variable v, then its BDD representation cannot contain any vertices
labeled with v. Thus, once a BDD representation of a function is generated, many

functional properties become easily testable.

2.2.2 Effects of Variable Ordering

The form and size of the BDD representing a function depends on the variable or-
dering. In general, the choice of variable order can make a difference between linear
and exponential (in the number of variables) size. For example, Figure 2.3 shows two
BDD representations of the Boolean function f =a; Ab; V azAba V a3 Abs. The
choice of variable order a; < b; < ag < by < a3 < b3 yields a BDD with 8 vertices,

20 CHAPTER 2. PRELIMINARIES

BDDs with different variable orderings for same
Boolean function £ = al.bl + a2.b2 + a3.b3

0\ @
“a

W

O |~remmmmm
[y
(=]
[

Figure 2.3: Effects of variable ordering

while the choice of variable order a; < a2 < ag < by < by < b3 yields a BDD with 16
nodes.

The difference of a factor of two in the previous example may not appear all that
dramatic. However, for the more general case of f = a1 Aby V agAb V ... V n Aby,
it can be proved that the first variable ordering a; < b < az < by < ... <@y < by,
yields a BDD with 2(n + 1) vertices, whereas the other choice of variable ordering
a <as<...<ap<b <...<b, yields a BDD with 2"*! vertices. For large values
of n, the difference between the linear growth of the first order and the exponential
growth of the second has a dramatic effect on the memory requirements and the

efficiency of the manipulation algorithms.

Most applications using BDDs choose some ordering at the beginning and con-
struct graphs for all relevant functions according to this ordering. This ordering is
chosen manually or according to some heuristic guided analysis of the underlying
functions in the design. For example, several heuristic methods have been devised
that, given a logic gate network, often derive a good ordering for variables represent-
ing the primary inputs [27, 50]. Note that these heuristics do not need to find the best

2.2. BINARY DECISION DIAGRAMS 21

possible ordering. As long as an ordering can be found that avoids an exponential

growth, operations on BDDs remain reasonably efficient.

Table 2.3: Complexity of BDD algorithms

Operation Notation | Complexity
Negation —f o(1)
Conjunction 1 fAg O(|fllgl)
Disjunction fVvg O(|f1lgl)
Exclusive-OR f@g O(|fllgl)
Equivalence f=g O(|flgl)
If-then-else ite(f,g,h) | O(|f]lgllR])
Cofactoring fo, fa O(|f])
Existential Quantification Ja-f o(|fP?)
Universal Quantification Va- f o(f1®
Substitution fla+gl | O(fPlgl)

Bryant [6] gives algorithms for computing the BDD representations of —~f and
fV g, given the BDDs for functions f and g. These algorithms have complexity
linear in the sizes of the argument BDDs. Table 2.3 gives a brief overview of the
complexity of some BDD manipulation algorithms. For example, given the BDDs for
the argument functions f and g, the complexity of the algorithm to generate the BDD
for fV g is proportional to the product of the sizes of the individual BDDs. (We use
the notation |f| to denote the number of nodes or the size of the BDD representing
the function f.)

Another useful operation over BDDs is quantification over Boolean variables and
substitution of variable names. Bryant gives an algorithm for computing the BDD
for a restricted function of the form f, and fz, i.e., f with the variables a set to 1 or
0. The restriction algorithm allows us to compute the BDD for the formula Ja - f,
where a is a Boolean variable and f is a function, as f, V fz. The substitution of a
variable w for a variable v in a function f, denoted by f[v < w], can be accomplished

using quantification:

flvew]=Fw-[v=w)A f].

22 CHAPTER 2. PRELIMINARIES

More efficient algorithms [6, 7] exist for the case of quantification over multiple vari-

ables or multiple renamings.

2.2.3 Intuition on BDD Variable Ordering

BDDs provide a practical approach to symbolic Boolean manipulation of large designs
only when the graph sizes remain well below the worst case of being exponential in the
number of variables. As the previous example shows, BDD sizes for some functions
are sensitive to the variable ordering chosen but remain quite compact as long as
a good ordering is chosen. Further, there is ample empirical evidence indicating
that many functions encountered in real applications can be represented efficiently as
BDDs. Here, we list some simple yet powerful rules of thumb that can be employed

to keep BDD sizes well behaved.

e Control before Data: Variables that decide functions earlier should be higher
up in the variable order. In particular, in the global variable order, control
signals which decide where data gets steered should be above the data bits they
steer. As an example, consider a multiplexer, with z1,...,%, and yi,...,Yn aS
data inputs on two input streams, 21, . . ., 2, is the output stream and sel as the
select line, then the control signal sel ought to be above the data bit variables in
the variable order. This will ensure that BDD for the output of the multiplexer

is compact.

Another common practice among designers is to have a reset control signal
that causes all the individual finite state machines to transition from whatever
state they are to their respective idle states. Keeping the variable reset up in
the variable order helps have compact BDDs for the next state functions of the

finite state machines.

e Interleaved ordering for special hardware: Comparators, equality detec-
tors and adders are common in digital designs. In each of these cases it is im-
portant to keep the bits interleaved. For example, consider a comparator with

Z1,...,Zn (Tn is most significant bit) and y, ..., yn as data inputs on two input

2.3. MODELING SYNCHRONOUS HARDWARE WITH BDDS 23

streams, and out as output. In order to ensure that the BDD for the output out
is compact, it is important to have bits from the two input channels interleaved,
i.e. the variable order should obey z,, < ¥n < Tp-1 < Yn-1 < ... < Z1 < Y1.
Note that since comparators compare the most significant bits first, we put
them on top of the variable order. So, choosing the other interleaved order
T <y < Ty <Y <...< Ty <Y, would yield poor results. However, in case
of an equality detector, there is no special significance to the most significant
bit, and either of the two interleaved orders would be optimal.

We can consider each output of an n-bit adder as a Boolean function over vari-
ables 1, . . ., Tn, Tepresenting one operand, and ¥, . . ., yn representing the other
operand. The function for any output bit of the adder has OBDD representa-
tion of linear complexity for the interleaved ordering z; <y; < T2 <y2 <...<

Tn < Yn.

Even when these simple rules of thumb are unable to avoid BDD size blowup,
there are dynamic variable ordering heuristics [48] which can be invoked automatically
once the BDD sizes reach some limit. This typically slows down the manipulation
algorithms since improving the ordering is a computationally intensive task. In our
experience, the best approach is to start with a manually fixed ordering based on some
high level intuition about the underlying circuit, and to enable dynamic ordering in
case the initial choice fails in the first pass. The final ordering decided by dynamic
ordering is dumped out to a file and used for subsequent simulations. In this way,
the computationally intensive cost of dynamic variable ordering is incurred only once

and amortized over many simulation runs.

2.3 Modeling Synchronous Hardware with BDDs

We analyze synchronous hardware by modeling it as a Mealy machine. A Mealy
machine for our applications is a 4-tuple, and is given as M = (x,y, g, nn), where x =
{z1,..., Tk} is the set of state variables, and y = {y, ..., 4} is the set of input signals.

We will use x' = {z},...,z}} to denote the next state versions of the corresponding

24

CHAPTER 2. PRELIMINARIES

Synchronous Modulo-8 Counter

Y
o

s) >

Y
—E

=D le @ {>O——-

AN

Figure 2.4: Modeling a synchronous circuit with BDDs

2.3. MODELING SYNCHRONOUS HARDWARE WITH BDDS 25

variables in x = {z;, ..., zx}. The set of possible states is {0,1}*, and the input space
is {0,1}!. The initial state, go, is some state from the state space {0,1}*. The next
state function vector is n : [ny,...,74], where the function n; : {0,1}* x {0,1}} —
{0,1}*, is the next state function of state variable z;. (Conventional definitions of
Mealy machines include outputs too, but they are not relevant in our applications,

since we are only concerned with exploring the state space of the machine.)

Since BDDs can be used to represent functions over finite domains (like Boolean
functions) and finite sets, they can be used to represent the next state function n and
the initial states gp.

This method of modeling a synchronous circuit can be illustrated by using an
example. The circuit in Figure 2.4 is a modulo-8 counter. Let x = {z1, 29,23} be
the set of state variables for this circuit, and let x' = {z},z}, 25} be the next state
versions of these state variables. The next state functions n = {ni,ng,n3} for the

state variables are given by

ny = I,
ng = 1@ e,
ny = (21 AZ9)® 3.

BDDs for these functions can be easily created. Assuming the initial state corresponds
to all the state variables being 0, we get a BDD for gy by creating a BDD for the
function -z, A —x9 A 3.

BDDs can be used to represent not just sets of states, but also sets of ordered
pairs of states. This enables modeling the transitions of a circuit as BDDs. This
is done by using the set of state variables x = {z,...,2;} and their corresponding
next state versions x’ = {z/,...,z}}. A valuation for the variables in x and x’ can be
viewed as designating an ordered pair of states in the circuit, and we can represent
sets of these valuations using BDDs. Such sets of pairs of states can be used to model
the next state transition relation. If T is a transition relation, then we use T'(x,x’)
to denote the BDD that represents it. In the example of the synchronous modulo-8
counter (Figure 2.4), the individual next state functions for state variable z; is turned

26 CHAPTER 2. PRELIMINARIES

into a relation ¢; as follows:

ti(x,zy) = (2} =-3),
ta(x,15) = (2 =21 @ x2),
t3(x, IL‘;) = (.’Eg = ((131 A .’132) @D 333).

The individual ¢; relations describe the constraints that each z} must satisfy in a
legal transition. These constraints can be combined by taking their conjunction (for

asynchronous circuits we would take the disjunction) to form the transition relation

T(x,X) = ti(x,z}) Ata(x,z5) Ats(x, z5).

In the general case of a synchronous circuit with state holding elements x =
{z1,...,7x} and associated next state functions n = {n,...,ns}, the individual

relations are defined as
ti(x,z)) = (z;=mn).

Continuing the analogy with the synchronous modulo-8 counter, the conjunction

of these individual relations forms the transition relation of the whole circuit
T(x,x") = t1(x, 7)) Ata(x,25) Ao Atp(x, 27)-

Given a BDD for the individual functions n;, it is straightforward to compute the
BDD that represents the transition relation 7. Such a transition relation is called

monolithic, because it is represented by a single BDD.

2.4 Symbolic Reachability Algorithms

Given the BDDs for the initial state and the next state functions of a digital system,
we can use standard BDD based symbolic algorithms to compute one step successors

(also referred to as image) and one step predecessors (also referred to as pre-image) of

2.4. SYMBOLIC REACHABILITY ALGORITHMS 27

any set of states. These can be done repeatedly to compute all the reachable states.

In our applications, sets can be viewed as predicates, since we can form the char-
acteristic function corresponding to a set. BDDs can be used to represent predicates
and manipulate them [7]. For example, let R(x) be a BDD with support in x, we can

compute the image of R under n as
Im(R(x),n(x,y)) = Xx".3x,y.(x' = n(x,y)) A R(x).

Im produces a predicate with support in x'. The resulting predicate is 1, if and only
if x' is in the image of R under n. The set of reachable states in M can be computed

by a least fix point iteration [7]:
FwdReach(go) = Ifp R.Ax.(qo(x) V Im(R(x),n(x,y)))-
The notation Ifp (least fixed point) is short for the following piece of pseudo-code.

Rreached < Qo
Ryrevious + 0
while Reached # Rprevious dO
Rprevious < Rreached
Rreachea < Go V I™(Rprevious, 1)
return Rreoched

(For a very simple tutorial on symbolic model checking, please refer to the Appendix
of this chapter in Section 2.6.1.)

Let g be the set of states that satisfies a user specified property, and let g(x) be
the BDD representing it. Then the pre-image of ~g(x), i.e. the set of states that can
reach a state violating the property g in one step, can be computed as follows:

Pre(—g,n) = Ax.3x,y.(x' = n(x,y)) A g(x').

Pre produces a predicate with support in x. The resulting predicate is 1, if and only

if x is in the pre-image of —g under n. The set of states that can reach —g in machine

28 CHAPTER 2. PRELIMINARIES

M can be computed by a least fix point iteration [7]:
BackReach(—g) = 1lfp R.Ax.(—g(x) V Pre(R(x),n(x,y)))-

As before, the notation Ifp, is now short for the following piece of pseudo-code.

Rreachea — 9(X)
Ryrevious < 0
while Rrcoched 7 Rprevious dO
Rprevious = Rreached
Rreached —9(%) V Pre(Rprevious, 1)

return Rreached

2.5 Constrain Operator

BDDs are the standard representation of Boolean functions in logic synthesis and
formal verification. In both logic synthesis and formal verification, one frequently has
don’t-care information, which should be used to improve the quality of the solution,
the efficiency of the algorithm, or both. Thus, an operator that simplifies a BDD using
don’t-care information is obviously important. For historical reasons, this problem
is usually phrased in terms of a care-set: Given BDDs f and c, find another BDD
g (which is hopefully smaller than the BDD for f) that agrees with f for all truth
assignments that satisfy c.

Several simplification operators have been proposed. The earliest are the constrain
operator (also called the generalized cofactor [18]), denoted by |, and the restrict op-
erator, denoted by {}. Both these operators were proposed by Coudert and Madre [18].
For our applications, constrain is a better match and hence we define it. (More details

on restrict can be obtained from [18].)

2.5.1 Definition of Constrain

For a function f and a given care set c, the function f | ¢ can be interpreted as

an incompletely specified function whose onset is f A ¢ and don’t care set is —c.

2.5. CONSTRAIN OPERATOR 29

The generalized cofactor (function definition given below) depends on the variable
ordering used in the BDD representation. (If ¢ is a cube, the generalized cofactor is
equal to the usual cofactor and is independent of the variable ordering.)

constrain f |c
assert (c #0)
if ((c==1)||(f ==0)||(f == 1)) return f
if (f==c) return 1
if (f ==-c) return 0
let z, be top variable in c
if (c;z ==0) return f; |cg,
if (c;; ==0) return fs |cg

else return (ite 1 fo, { ¢y fi 4 Cs)

2.5.2 Properties of Constrain

Some interesting properties of constrain which we will exploit later in this thesis are
listed below. The proofs for these properties are in [52, 66].

o (fif)=Land (f1-f)=0

o (fAQLh=(fiR)A(gih)

e (flg9Ag=FAg

o (flg)lg="Flg

e if f and h have independent support f | h = f
o (flg=1)if(g—71)

o (flg=0)iff (9 —+~f)

The belief that constrain never increases the size of the BDD to which it is applied

is a common misconception. There exist functions f and g such that the resulting

30 CHAPTER 2. PRELIMINARIES

BDD for f | g is bigger than the BDD for f. The idea is we choose a function f for
which there is a lot of subgraph sharing and then we let constrain destroy some of

the sharing.

Example 1 ! Consider the family of function fp =2, ®...0T, andc, = T1V... Tn.
The variable order is irrelevant because of symmetry. For plain BDDs, f, has 2n+1
nodes (including the terminal nodes), whereas fn | cn has 3n — 2 nodes. For BDDs
with complement edges, fn had n + 1 nodes, whereas fn | cn has 2n — 1 nodes. In

either case, the BDD size increases after the constrain operation.

2.6 Appendix

2.6.1 A Simple Tutorial on Symbolic Model Checking

The key data structure used in symbolic model checkers is a BDD (Binary Decision
Diagram) [6]. Computing the set of reachable states using BDDs requires three basic

ideas:
o Representing sets of states using BDDs
e Computing successors of sets of states

e Fix point iteration

The first idea is to represent sets of states using BDDs. Basically, we can think of
a BDD as representing a set of truth assignments: if the function the BDD represents
is true for a given truth assignment, that assignment is in the set; if the function
is false, that truth assignment is not in the set. For example, if we consider three
Boolean variables z1, z2, and z3, the BDD for the function z; A =2 A —z3 represents
the set containing only one truth assignment {100}; the BDD for the function z; V z2
represents the set of six truth assignments {100, 101, 110, 111, 010, 011}, and the
BDD for 1 (the Boolean value True) represents the set of all eight truth assignments.
If we associate a Boolean variable with each flip-flop (state holding element) in a

1This example was suggested by Jerry Burch and is also in Hu’s thesis [41].

2.6. APPENDIX 31

input -
i
x1 o)
flop
plyl
xﬁ x3
clk © ©
flop £flop
p |¥? D LY3
clk clk
VAN
clock

Figure 2.5: Simple finite state machine

circuit, then these BDDs can be viewed as representing sets of states of the state

machine.

The next concept is image computation. Basically, if we have a BDD that rep-
resents a set of states of a state machine, the image of that BDD is a new BDD
that represents the set of states that the machine could be in (assuming a totally
nondeterministic assignment to the inputs from the environment) exactly one clock
tick later. For example, consider the state machine in Figure 2.5. (The example
used in this simple tutorial is from Hu [42].) The BDD for —z; A 2 A -3 represents
the single state where the flops 71,2, and z3 are outputting 0, 1 and 0 respectively.
Depending on the value of the input, the machine has two possible states at the next
clock tick, so the image of this BDD is the BDD for (—z; Aza A—z3) V (21 A—Z2 A T3).
The simplest way to compute images is to first build a BDD that represents the re-
lationship between the present and next state values of the flops. This BDD is called
the transition relation. In our example, it would be the BDD for (y; = (z; @ i))A
(y2 = (i Aza) V (i Azs))A (y3 = (—i Axs) V (i A z2)). Next, AND the transition
relation with the BDD whose image is desired. Then, existentially quantify out the

variables for the present state and the primary inputs.

32 CHAPTER 2. PRELIMINARIES

The final idea is an iteration using images to compute all reachable states. It can

be evaluated naively by the following pseudo-algorithm:

BDD for initial state
Ry V Image(Ro)

Ry
R,

Riy1 = R;V Image(R;)

Intuitively, R; is the set of all states reachable in ¢ or fewer clock cycles from the
initial state. For finite state machines, this sequence will converge eventually, when
R;,, = R; (which is easy to test, since BDDs are canonical). In this example, the
initial state Ry = —x1 A o A —z3, after one iteration R, = (mz1 A z2 A —z3) V

(z1 A —z2 A T3), and after two iterations Ry = Ry, so we are done.

Chapter 3

Approximation by Overlapping

Projections

It is the mark of an educated mind to rest satisfied with the degree of precision
which the nature of the subject admits and not to seek ezactness where only

an approzimation is possible. — Aristotle.

The value of approximate methods is that they allow model checking techniques to be
applied to larger designs. In this chapter this underlying motivation for approximate
methods is brought out. Further, a new scheme of approximation, called overlapping
projections, is defined. This approximation scheme captures some important interac-
tion between different finite state machines. Finally, this scheme is compared with

earlier approximation schemes.

3.1 Why Approximate Methods?

In Chapter 2, we saw how BDDs can be used to compute and represent the exact set
of reachable states for finite state machines. Once this exact model is computed, we
can very efficiently prove safety properties [51, 58]. However, in practice, the naive
algorithms from Section 2.4 are not directly applicable to today’s large designs. This

33

34 CHAPTER 3. APPROXIMATION BY OVERLAPPING PROJECTIONS

is because of two problems:

e State Ezplosion Problem: Hardware systems are composed of many different
components which work concurrently. Each of these individual components may
have small manageable finite state machines. However, the global finite state
model of the whole concurrent system grows exponentially in size as the number
of components in the systems increases. This is widely known as the state
explosion problem. For large industrial désigns it is therefore not uncommon
to have designs with more than 10'%° states. Thus, methods which attempt
to explicitly enumerate the reachable state space one state at a time are very

unlikely to succeed.

e BDD Size Blowup Problem: In the case of BDDs, there is no direct correlation
between the size of the BDD and the size of the set it represents. There are cases
where the BDD for a very large set of states is compact, and there are also cases
where the BDD for a very small set of states is huge. Empirically, BDDs seem to
work well for designs whose size is within 100 state variables. For such designs,
the exact model can be computed and represented with BDDs. However, today’s
designs have thousands of state variables, and a direct application of BDDs to
compute and represent the exact model of such designs will usually fail. The
intermediate BDDs would need to store functions with thousands of variables
in their support, and even with dynamic variable ordering heuristics the size of

the BDDs grows extremely big, stretching the memory available to the limit.

Given the hopelessness of exact methods in dealing with large designs, we are forced to
settle for approximate methods which trade off accuracy for the capacity to deal with
larger designs. However, the situation is not as dim as it seems. In fact, approximate
methods often yield a lot of useful information. What makes them useful is:

e Localized domain of a property: Any method of approximation involves some loss
of information. The key question is to regulate the loss of information so that
useful information is still retained by the approximate method. Suppose we are

interested in checking if a design satisfies a certain required property. Now, proof

3.1.

WHY APPROXIMATE METHODS? 35

of any single property very rarely relies on every implementation detail. Hence,
if the scheme of approximation can retain sufficient design details relevant to
the property being proved, then the approximate analysis can still yield useful
results. This localized effect of a property renders approximate analysis useful.
The cone-of-influence [52] reduction is an example of how irrelevant details
(relative to a property) from a design can be abstracted away and the remaining

simpler design (which is bisimulation equivalent [13]) analyzed instead.

Property preservation between different models: Approximation methods reduce
the verification of a system property to the verification of a related property
over a simpler system. This enables us to do system analysis in one domain and
carry over the results to another domain. Some approximation (or abstraction)
is implicitly done when we model a real world system by some mathematical
model. In cases where the underlying mathematical model is complex, we can
analyze a usually simpler mathematical model. Typical example usage of ab-
straction is when verification of infinite state systems is done by constructing
a finite state abstract system that can be model checked. Abstraction can also
mitigate the state explosion problem in the finite state case, by constructing an

abstract system with a more manageable set of states.

We are interested in abstraction mechanisms that allow us to prove properties
in the simpler mathematical model and conclude that the more concrete model
has some related properties. Property preservation between the two models can
be formally justified by showing a formal relation between the two models, using
the theory of abstract interpretation. The theory of abstract interpretation, also
referred to as Galois connections [19], relates the semantics of systems in two
different domains. The theory was introduced by Cousot and Cousot [19] and it
is still being used in many different settings, ranging from compiler optimization
to language semantic analysis, formal verification and theorem proving. (More
details on Galois connections, and how our scheme of approximation fits in the
Galois connections framework is in the Appendix of this chapter.)

36 CHAPTER 3. APPROXIMATION BY OVERLAPPING PROJECTIONS

3.2 Approximation by Overlapping Projections

This section introduces a new scheme of approximation called overlapping projections,

and forms the basis of this thesis.

3.2.1 Definitions and Theory

Recall from Section 2.3, that x = {=z,...,zx} is the set of state variables. Let
w = (wy, .. ., w,) be a collection of not necessarily disjoint subsets of x. (Each subset
will also be referred to as a block).

Projections and Concretization: We define the operator a;(R) which projects
a predicate R(x) onto the variables in w;. Intuitively, c;(R) represents the set of
Boolean vectors that agree for the variables in w; with some Boolean vector satisfying
R. Let z consist of all of the Boolean variables in x that are not in w;. We can define
o; as

o;(R(z,w;)) = Aw;.3z.R(z, w;).

Clearly, the set of Boolean vectors satisfying R is a subset of those satisfying a;(R).
This can be written using logical implication as R — a;(R). The projection operator,
«, projects a predicate R(x) onto the various w;’s, and its associated concretization
operator y conjoins the collection of projections. Figure 3.1 is a geometric interpre-

tation of (a,y) pair of functions.

a(R(x)) = (u(R),-..,0(R)).
’Y(Rla---pr) = Rj.

~

1

7

Example 2 Consider a design with 4 state variables, x = {z1,...,24}. Let the
collection of choice of subsets be w = (w1, ws), where wy = {z1,%2,73} and wy =
{23, x3,24}. (Note that there is some overlap in the sets w, and wy.) Let R(x) be
the one_hot function, which is true if and only if one and ezactly one of the variables

in {z1,...,24} is true. Thus R(x) = 21898354 V $1%203T4 V $152%3%4 V L152T3%4.

3.2. APPROXIMATION BY OVERLAPPING PROJECTIONS

(R1, R2) = alpha(R)

7]
s .
’
.
’
,

’ gamma (R1, R2)

Dimension spanned by w2

Dimension spanned by wl

Figure 3.1: Concretization of projection of R is a superset of R -

37

38 CHAPTER 3. APPROXIMATION BY OVERLAPPING PROJECTIONS

Now o;(R) = 3(x — wy).R(x) which reduces to 3z4 - R(x). Ezistential hiding of
variable z4 from R(x) results in oy (R) = $15223V T122%3V T12283V T122T3. This is
the atmost_one function among the variables {z1,z2, %3}, which is true if and only
if at most one of the variables in {z1,T,, 33} is true. Similarly ay(R) = ZoT3TsV

$2:E_3$_4V IE_2$3ILT4V f2f31'4 .

Lemma 1 For every predicate R(x) and collection of subsets (w1, ...,wp) of x, R —

v(e(R))-

Proof: The proof for Lemma 1 is simple since for each j, 1 < j < p, (R = a;(R)).
Further, it is a simple fact of propositional logic that Aj(p — g;) implies that p — Ajg;.

The intuition behind the proof is that each individual projection a;(R) is an over-
approximation of R. Furthermore, the conjunction of a set of over-approximations of
R is also an over-approximation of R.

Lemma 1 effectively states that projecting a predicate R onto a collection of
subsets and then concretizing the projections by -y results in an over-approzimation.

Figure 3.1 gives a geometric interpretation of this observation.

Example 3 Continuing on ezample 2, concretizing the projections of the one_hot
function through vy results in y(a(R)) = T15253%y V T18283Ls V £12283%4 V $152T3T4 V
E1T2EaTs V T T283z4. Nole that apart from the minterms that are in the onset of
the original one_hot function R(x), this also includes the minterms £,Z2%3%s and
T1%edaxs. Thus, the onset of the resulting function after projection and concretiza-

tion is a superset of what we started with.

Meet and Join: Let R = (Ry,...,Rp) and S = (S1,...,S5p) be two equally sized
tuples. We define the meet (M) and join (U) operator between R and S as follows:

(Buye s B (S1y- 0, 55) = (RuASL. By ASy)
(Rl,...,&)u(sl,...,Sp) (RLV Si,...,RyV Sp)

3.2. APPROXIMATION BY OVERLAPPING PROJECTIONS 39

gamma (R1, R2) gamma (Join ((R1, R2), (S1, S2)))
/

gamma (S1, S2)

R2 union 82

(43

Dimension spanned by w2

Sl

Rl union S1

Dimension spanned by wl
gamma (Join ((R1, R2), (81, S2))) is a superset of
(gamma (R1, R2) union gamma (S1, 82))

Figure 3.2: Geometric interpretation of join operator (L)

Note that v(R) U y(S) € y(R U S), which makes the join operator an approxi-
mation of set union. Figure 3.2 gives a geometric interpretation of the join operator,
illustrating the approximation induced by it. The meet operator, however, is an exact
set intersection operator, since 7(R) N (S) = y(R 1 8)).

The operator « allows us to represent a big BDD with support in x by a tuple
of potentially smaller BDDs with limited support, at the cost of a loss of accuracy.
Concretization through <y can potentially result in a bigger BDD with bigger support,
hence we would like to avoid computing Y(Ry,...,R,) explicitly. Let Img, (the
subscript ap denotes “approximate”) return the projected version of the image of an
implicit conjunction of BDDs, and let Pre,, return the projected version of the pre-
image of an implicit conjunction of BDDs. Figure 3.3 gives a geometric interpretation

of I'm,yp, and Figure 3.4 gives a geometric interpretation of Pregp.

Img (R, n) = o(Im(y(R),n(x,y)))
Preqy(R,n) = oPre(y(R), n(x,y)))

40 CHAPTER 3. APPROXIMATION BY OVERLAPPING PROJECTIONS

S1

Dimension spanned by w2
zZs

d | qama(R1l; R2)

R1

Dimension spanned by wl

{(s1, s2) = alpha(Im(gamma(Rl, R2), n))

Figure 3.3: Geometric interpretation of I'mgy : (S1,S82) = Imgy((R, Ry),n)

Using Im,,, we can compute an over-approximation, of the reachable states in a

machine M, through a least fix-point iteration.
FwdReachq,(g0) = 1fp R.(a(go) U Imep(R, n))

The notation Ifp is short for the following piece of pseudo-code.

Rireachea + @(q0)
Rprevious < @(0)
while Rreached # Rprevious dO
Rprevious ¢ Rreached
Rieached + (o) U Imigp(Rprevious,)

return R eached

Thus, the least fixed point iteration [7] starts with R = (0,...,0), and on each it-
eration joins the current approximate set with the approximate successor set. Finally,
after reaching convergence, it returns a tuple R to FwdReache(g). A superset of
the set of states that can be reached from the initial states is the émplicit conjunction:

v(FwdReachqp(qo)).

3.2. APPROXIMATION BY OVERLAPPING PROJECTIONS 41

o

3 s1

Dy

Ee)

B

]

[+

o

a

)

=4

]

o

& Coob T

g o :Prea(gar(lma(ial,i:u);‘ n gamma(R:L, R2§ =

Q 4 ,' . - e ’/
Rl

Dimension spanned by wl

(S1, S2) = alpha(Pre(gamma(R1l, R2), n))

Figure 3.4: Geometric interpretation of Preg, : (S1,52) = Pregp((Ri, Re),n)

Similarly, let g be the set of states that satisfy a user-provided property, and
let g(x) be the BDD representing it. The BDD —g(x) represents the set of states
violating the property. Using Pre,p, we can compute an over-approximation of the

set of states in M that can reach some state in the set —g, as follows:
BackReachg,(—g) = 1fp R.(a(—g) U Preg,(R,n))

The notation Ifp is short for the following piece of pseudo-code.

Rreachea + a(g)
Ryrevious < ¢(0)
while R, eached # Rprevious dO
Rprevious ¢ Rreached
Rereached @(—g) Ll Pregy(Rprevious, 1)

return R'reached

A superset of the set of states that can reach —g is is the implicit conjunction:
v(BackReachqy(—g))-
Using Lemma 1 and monotonicity of Im and Pre functions, it can be shown that

42 CHAPTER 3. APPROXIMATION BY OVERLAPPING PROJECTIONS

the derived functions Im,, and Pre,, have the property

Im(R(x),n) C Im(y(a(R(x))),n) S 7(Imap((R(x)), 1))
Pre(R(x),n) C Pre(y(e(R(x))),n) S v(Preq(a(R(x)),n))

Theorem 1 For a given Mealy machine M,

FwdReach(g)) — ’Y(FwdReaChap(qO))
BackReach(—g) — v(BackReachap(—g))

Proof: Proof for Theorem 1 follows trivially from the previous two equations, as
every iteration of the approzimate least fiz-point routine for F° wdReachq,(go) and

BackReachey,(g) is an over-approzimation.

Today’s designs have a very large set of state variables, x = {x1,...,2&}. There
are 22* possible Boolean functions over these variables. In the worst case, the BDD
size for some function over these variables is O(2*). For large k, this worst case size
may be prohibitively expensive. However in our scheme of approximation with the
choice of subsets w = (wy, . . ., w,), the support sets of the intermediate BDDs while
computing FwdReach,,(qo) and BackReachq,(—g) are restricted within w;, where
w; C x. In particular, if |w;] = m (we use |w;| to denote the cardinality of the set
w;), and m < k, then the worst case BDD size of O(2™) is more amenable than the
worst case size of O(2¥). These smaller sized support set BDDs result in robust and
scalable verification algorithms. However, the price paid for robustness is that any

interaction or correlation between state variables in different subsets is lost in the

process.

Definition 1 A collection of subsets w' is a refinement of the collection w if each

block of w can be expressed as a union of blocks of w'.

Lemma 2 Ifw' is a refinement of w and let (/,7') and (a,~y) be associated with w'

and w respectively, then
v(e(R)) = 7' (/(R))

3.2. APPROXIMATION BY OVERLAPPING PROJECTIONS 43

From Lemma 2 and monotonicity of the predicate transformer Im,,, we conclude
that coarser collection of subsets gives tighter approximations. At the same time,
coarser collection of subsets entails that the intermediate image BDDs would have
larger support sets, making them more liable to BDD blowup problems. (As expected
in the limit case, when there is just one subset, w; = x, in the collection w, the
algorithms FwdReach,, and BackReach,, give exact results.)

Earlier schemes of approximation required that the various subsets in the collection
w be mutually disjoint partitions. In the next section we show that with overlapping
projections we can obtain tighter approximations with smaller sized subsets than with

disjoint partitions.

3.2.2 Why Overlapping Projections?

Overlapping projections can capture limited interactions among state machines while

keeping the sizes of the BDDs under control. We discuss some common scenarios

where this happens in this section. In contrast, disjoint partitions can only cap-

ture interactions among a set of state machines by including all of them in a single

projection, which often leads to large variable subsets that cause BDD size blowup.
Typical designs today exhibit the following phenomena:

o Small Interface Phenomena: Often, two rather big state machines have a small
interface. Figure 3.5 is one way to visualize the phenomena. The next state
transitions of the big machine M; may depend on only a few of the state bits
of M, and similarly the next state transitions of the big machine M, may
depend on only a few of the state bits of M;. This interaction between these
big machines can be captured by choosing one subset which includes all of the
state bits of M, and a few of the state bits of M, relevant to M;. Another
subset would have all of the state bits of M, and a few of the states bits of
M, relevant to M,. Capturing the same interaction with disjoint subsets would
require including all of the state variables of the big machines M; and M, ina

single subset. Such large subsets are very susceptible to BDD blowup problems.

e Master-Slave Phenomena: Design modules usually have a master FSM that

44 CHAPTER 3. APPROXIMATION BY OVERLAPPING PROJECTIONS

Small Interface between

big state machines
Choice of subsets to

capture small interface
((M1, c2), (M2, C1))

<iis

Choice of subsets to get
master—-slave interaction

((M, s1) (M, s2) (M, S3))

5
Y

Slave S1

{

s1ave 52
[
)
<§ -
H
\ 3/
%
\sQAets

Figure 3.5: Capturing interaction b/w FSMs with overlapping projections

communicafes with a number of other slave FSMs. This interaction between the
master and each of its individual slaves can be captured by having subsets where
the master is paired with each of its slaves in different blocks. Figure 3.5 is one
way to visualize the phenomena. Once again, capturing this same interaction
with disjoint subsets would require including the state variables of the large
master FSM and the state variables of all the slave machines in a single subset.

Such large subsets are very susceptible to BDD blowup problems.

3.2.3 Projections vs Partitions

Clearly the scheme of approximation by projections is more general than that which
uses partitions (since disjoint partitions can be viewed as a special case of projections,
where there is no overlap). As seen in the earlier section, disjoint partitions require
larger sized blocks to capture the same property. Thus, overlapping subsets allow us
to hit intermediate points in the Qualii,fy of Result vs memory space tradeoff curve

(Figure 3.6), with disjoint partitions on one extreme and exact reachability on the

3.2. APPROXIMATION BY OVERLAPPING PROJECTIONS 45

P
e
]
[
v
- Discrete jumps Exact Result
2 with overlapping projections @ - >|<
o \ !
H as approximation scheme I" -- |
3 o :
D>y __2
o ' _ :
A [T &
g - |
- 1
® .
| Q-=-=-=-=- g
®--]
-1 I
’ N .
@O G- 1 Discrete jumps
--- : with disjoint partitions
G--=-=-=--=

Memory Space Requirement

Figure 3.6: Quality of result vs memory requirement tradeoff curve

other. (Since the improvement in the quality of the results happens in discrete steps
the curves for disjoint and overlapping schemes in Figure 3.6 are shown with dotted

lines as step functions.)

With disjoint partitions as the underlying approximation scheme, the sizes of the
individual subsets have to increase substantially (which entails a substantial increase
in memory space requirements) before the quality of the approximation can improve.
On the other hand, with overlapping projections as the underlying approximation
scheme, we can incrementally increase the size of the subsets and incrementally im-
prove the quality of result. In particular, note in Figure 3.6, the curve for overlapping
projections is consistently above that for disjoint subsets. Therefore, we expect to

get better quality results at a lower memory space requirement cost.

46 CHAPTER 3. APPROXIMATION BY OVERLAPPING PROJECTIONS

3.3 Related Work

At a high level, this idea of approximate forward and backward traversals is quite
similar to that of Wong-Toi et al. [22], who used successive forward and backwards
over-approximations and under-approximations to verify real-time systems. That
work used polyhedra for representing sets of real numbers along with BDDs, but
approximation was used only for the polyhedra, not for the BDDs.

Various approaches to approximate reachability and verification using BDDs have
preceded this work. Ravi et al. [59, 60] used “high density” BDDs to compute an

under-approzimation of the forward reachable set.

Cho et al. [12] proposed symbolic forward reachability algorithms that induce
an over-approzimation. Their basic idea was to partition the set of state bits into
mutually disjoint subsets, and then to do symbolic forward propagation on the in-
dividual subsets. The individual subsets can be viewed as sub-machines which have
in some ways been torn from other sub-machines. The original problem is thus re-
duced to doing exact symbolic forward propagation over smaller sub-machines. This
induces extra degrees of freedom for the sub-machines, and hence yields an over-
approximation of the reachable state space. They also proposed different variants
of the approximated symbolic forward propagation algorithm: MBM (Machine By
Machine) and FBF (Frame By Frame) which basically differ in the way they model
the interaction among the various sub-machines. FBF allows interactions among the
sub-machines at each time frame of a least fixed point routine, and hence allows for
tighter don’t care sequences to constrain the other sub-machines. MBM on the other
hand allows interaction only after a complete least fixed point has been computéd
for a sub-machine. As a result, the sequencing information is lost when trying to
constrain the other sub-machines. They further proposed two variants of the FBF
scheme, RFBF (Reached Frame By Frame) and TFBF (To Frame By Frame), which
again differ in the constraint set posed to the various sub machines during the course
of the least fixed point routine. Cho et al. [11] also proposed heuristics on how to

partition the set of state bits.

Moon et al. [53] used approximate reachability algorithms from [12] to aid model

3.4. CONCLUSIONS 47

checking algorithms, and Cabodi et al. [8] combined approximate forward reachability
with ezact backward reachability. Lee et al. [47] proposed “tearing” schemes to do
approximate symbolic backward reachability. They proposed “variable tearing” and
“block tearing” schemes to approximate the next state relation of a system, and
then incrementally refine the next state relation until it is sufficient to prove /disprove
a given ACTL or ECTL [51] property. They also partitioned the set of state bits
into mutually disjoint subsets. They formed the block sub-relations for the various
subsets, and then incrementally “stitched” the block sub-relations together until the
approximated next state relation was accurate enough to prove or disprove a given
property.

In contrast to the approaches in [59, 60] we are interested in computing over-
approximations (supersets). In contrast to the approaches in [8, 12, 11, 47, 53], we
allow for overlapping subsets of the variables. Our research [29, 30, 31, 32, 34] shows
that overlapping projections are a more refined approximation scheme compared to

earlier schemes based on disjoint partitions.

3.4 Conclusions

This chapter introduced and defined the idea of overlapping projections as an approx-
imation scheme. Earlier schemes of approximation based on disjoint subsets can be
viewed as a special case. Overlapping projections is a more robust scheme since it al-
lows for capturing interaction between different state machines with smaller memory

space requirements.

3.5 Appendix: Galois Connections

Galois connection is a general framework to define many approximate methods. In
this section, we briefly explain the Galois connections framework, and show how
approximation with overlapping projections can be explained under this framework.

Approximation methods allow us to prove properties in the simpler mathemati-
cal model and conclude that the more concrete model has some related properties.

48 CHAPTER 3. APPROXIMATION BY OVERLAPPING PROJECTIONS

Property preservation between the two models can be formally justified by showing a

formal relation between the two models, using the theory of abstract interpretation.

Definition 2 : Given a class of temporal properties P and two systems S and S

(where S, is an abstract (simpler) version of S), we say that:

o S, is a weakly preserving abstraction of S for P if for each ¢4 € P (where ¢ 4

is an abstract version of ¢)

if Sal= ¢4 then S Eé

e S, is strongly preserving abstraction of S for P if for any ¢4 € P,

Sil=daif and only if S |= ¢

Strong preservation does not leave much room for generating simpler systems.
For example, if all CTL [15] properties have to be preserved, the two systems &
and S84 must be bisimilar. Thus, weak preservation is more often used. Not only
does weak preservation allow us to deal with relatively simpler systems, it also allows
preservation of properties over the VCTL fragment [49] of CTL logic.

Using the terminology of [19], an abstract system is defined in terms of an abstract
domain, which is a set of states X4 that includes a partial order <, where a; < ag if a;
is a “more precise” abstract state than a,. Such abstractions are frequently presented
in terms of Galois connections. Here abstract states represent sets of concrete states,
and the two posets are the power sets of concrete states P(X), ordered by set inclusion,

and an abstract domain ¥4 ordered by <.

Definition 3 : Let (X4,=) and (X, C) be two partially ordered sets. A Galois con-
nection between these posets is a pair of functions (¢, 7y), where the abstraction func-
tion a : P(L) — T4 and the concretization function v : Xq4 — P(X) satisfy the

following properties :

3.5. APPENDIX: GALOIS CONNECTIONS 49

1. « and y are monotone

Sl - Sz — a(S’l) j a(Sg)

a1 2 az — 7y(a1) € v(az)

2. result of abstraction followed by concretization is something larger

VS € P(). SCy(alS))
Va € $4. a = a(y(a))

These two conditions can be alternatively written as a(a) < biff a C (b). In the
special case where Va € $4, a(v(a)) = a, the pair (o,) is called a Galots insertion.

3.5.1 Typical Applications of Galois Connections

Galois connections can be used in two different ways:

e Proving Properties: Given a system S and temporal property ¢, choose ap-
propriate poset (S4, <), a Galois connection {,7), and the weakest ¢4 (with
respect to <) such that

Sa FE ¢a
v(¢a) C ¢

The proof that these two conditions are sufficient to conclude S |= ¢ is left to

the interested reader.

e Generate Invariants: Given a system S, choose an appropriate poset (Sa, =),
a Galois connection (o,7) and generate ¢4 by doing fix-point computation in

S4. The assertion y(¢,) is an invariant of the concrete system S.

50 CHAPTER 3. APPROXIMATION BY OVERLAPPING PROJECTIONS

3.5.2 Overlapping Projections as a Galois Connection

In our applications, the pair of functions (,~) defined in Section 3.1 form a Galois
connection. The partially ordered set describing the concrete space is ([x — B], C),
and the poset describing the abstract space is (P([w; = B]) x ... x P([w, = B]),E).
Note that P(S) denotes the power set of S, and the ordering relation for the abstract
space is defined as (Ry,...,R,) C (S1,..:,5p) if Vi€ [1...p] (R = Si).

Given the ordering relation (C) in the abstract domain, it is easy to verify that
the join operator returns the least upper bound, and meet returns the greatest lower
bound of the two elements R and S in the abstract domain. In our applications, since
Va € T4, 0a(y(a)) = a, the pair (a,~) is actually a Galois insertion. Furthermore,
as illustrated in Section 3.5.1, we use this scheme of approximation to prove safety

properties and to automatically generate invariants.

Chapter 4

Approximate Forward Reachability

This chapter first defines the key challenge in symbolic forward reachability, namely,
the image computation problem. Existing methods of BDD-based image computation
are briefly reviewed. A new image computation method, called multiple constrain, is
defined. This method allows for efficient computation of projections of exact images.
Finally, the results obtained by applying this method to different design examples are

presented.

4.1 Basic Algorithm

Computing the set of states that can be reached from the initial states is at the heart
of model checking. In Section 2.3, we saw how BDDs can be used to represent Boolean
functions, sets of states, and relations. This enables modeling synchronous hardware
designs with BDDs. Let gy be the set of initial states, represented by a BDD gp(x).
We wish to compute a BDD, R(x), that represents the states reachable from ¢p via
the transition relation T' (represented by the BDD T'(x,x')). We first consider the

problem of finding those states R;, reachable in at most one step from go. This set

o1

52 CHAPTER 4. APPROXIMATE FORWARD REACHABILITY

of states is given by
R, = qU{s|3s-[s€qA(ss)eT]}

Given the BDDs go(x) and T'(x,x'), we can compute a BDD representing R; by

performing the logical operations corresponding to the above expression:

Ri(x') = gqo(x')V3Ix-[go(x) AT (x,x")].
Similarly, the set of states reachable in at most two steps is represented by
Ry(x') = gqo(x)V3Ix-[Ry(x) AT (x,x')].

In general, the set of states reachable in at most n + 1 steps is represented by

Bon(x) = qo(x) V 3x - [Ra(x) AT(x,X)]

Note that each set of states is a superset of the previous one. Since the total number
of states in a hardware design is finite, at some point we must have R,,; = R,. No
further states are reachable, so the set of all reachable states is represented by Ry (x).

4.2 Methods to Compute Images

The key step in the high level algorithm outlined earlier is computing the one step
successors of a set of states. This is widely referred to as image computation. Ex-
isting methods of BDD-based image computation can be broadly classified into two

categories: transition relation approach and transition function approach.

4.2.1 Transition Relation Approach

As outlined in the previous section, this method relies on building BDDs to represent

the transition relation T'(x, x') of the circuit. The key problem is computation of the

4.2. METHODS TO COMPUTE IMAGES 93

relational product:
R(x) = 3Ix-[R(x) AT (x,x)].

Although the relational product can be computed using the normal BDD algorithms
for restriction and Boolean connectives, it does not work well in practice for large
designs. This is because the basic algorithm requires having T(x, x") be a monolithic
relation, consisting of a single BDD. Unfortunately, for most practical designs, this
BDD is very large. It is much more efficient to use a special purpose algorithm, based

on partitioned transition relations [7].

Partitioned Transition Relations

Recall that for synchronous circuits the transition relation T'(x,x’) is basically the
conjunction of a number of relations #;(x, ;). The individual #; relations have small
BDD representations, because they describe the constraints that a single next state
variable z} must satisfy in a legal transition. (On the other hand, the monolithic
BDD for the transition relation T'(x,x’) describes the constraints that all next state
variables must satisfy in a legal transition, and is invariably extremely big for practical
designs.) Instead of forming the conjunction of the #;(x,})’s, we can represent the
circuit by a list of these BDDs, which are implicitly conjuncted. Such a list is called
partitioned transition relation [7). The relational product computation problem is

now of the form
R(x') = 3x-[R(x)A (ti(x,7)) Ata(x,2h) A ... Atn(x,27,))]-

The main difficulty in computing R'(x') without building the conjunction is that
existential quantification does not distribute over conjunction.

With such partitioned transition relations, a technique called early quantification,
is used to allow for more efficient relational product computations. The early quan-
tification technique is based on two observations. First, circuits exhibit locality, so

many of the t;(x, z}) will depend on only a small number of the variables in x. Second,

54 CHAPTER 4. APPROXIMATE FORWARD REACHABILITY

although existential quantification does not distribute over conjunction, sub-formulas
can be moved out of the scope of existential quantification if they do not depend on
any of the variables being quantified. Thus, we can conjoin the #;(x,z}) with R(x)
one at a time and use early quantification to quantify out those state variables from

x when none of the remaining ¢;(x, z;) depend on those state variables.

The impact of this method clearly depends on the order in which the various i;
relations are conjuncted with R(x). The hope is that with many of the state variables
being quantified early, the intermediate BDDs will have smaller and more manageable
support sets. More formally, we could define the lifetime of a state variable as the
the interval [i,7] where 4 is the least index of relation ¢; where it appears, and j is
the greatest index of relation ¢; where it appears. The goal then is to sort the various
individual #; relations so that the maximum number of live variables at any point is
minimized. Based on this idea, different heuristics to order the various ¢;(x, z}) in the

list forming the partitioned transition relation have been proposed (28].

While a partitioned transition relation with one BDD for each state variable is
almost always more efficient than constructing a monolithic transition relation, it may
not be the best choice. As long as the BDDs do not become too large, it is better
to combine some of the ;(x, z}) into one BDD by forming their conjunction. Fewer
BDD nodes may be needed in this representation if the BDDs for the individual ¢;’s
that are combined have a similar structure near the root of their BDDs. Combining
some of the BDDs in a partitioned transition can also speed up the algorithms for
model checking and reachability analysis. Ranjan et al. [61] proposed heuristics on
how to combine some of the individual ¢; relations into clusters. The next state
transition relation is then represented as a list of BDDs where each BDD in the list
is the transition relation for a cluster of state variables. The BDDs for these clusters
are further ordered in the list by a heuristic to allow for early quantification benefits.
More details can be obtained from [61]. This transition relation approach did not

work well on our larger examples.

4.2. METHODS TO COMPUTE IMAGES 59

4.2.2 Transition Function Approach

Instead of using transition relations for image computation, Coudert and Madre [18]
proposed a way of computing the image of a set by merely manipulating the vector of
next state functions n. (Following the notation of Section 2.4, we use Im(R(x), n) to
denote the BDD for image of a vector of Boolean functions n : [ny, ..., g}, when the
domain is restricted to the set represented by the BDD R(x).) Coudert and Madre
proposed two algorithms to compute the BDD for I m(R(x),n) without computing
the transition relation.

Both the algorithms are based on the constrain operator, which was defined in
Section 2.5. The fundamental property of constrain can be expressed by the following

theorem:

Theorem 2 Let f = [fi,..., fa] be a vector of functions, where the individual func-
tions f; are represented by a BDD f;(x). Let R be a non-empty set represented by the
BDD R(x). Let f | R(x) be a new vector of functions defined as

f.LR(X) =def [fl J,R, . 7fn J'R]
Then image of R under f is equal to the range of the vector of functions, flR,ie.
Im(R(x),f) = Im(1,f | R).

Proof: Details of the proof for this theorem can be obtained from [18]. |
Both the algorithms proposed by Coudert and Madre [18] work in two steps:

1. first step is common to both algorithms and involves computing a new vector of
functions n’ : [0}, ...,n}] such that Im(R(x),n) = Im(L,n’). From theorem 2,

it is easy to see that the vector n’ can be computed as n | R.

2. the second step consists of computing a BDD for Im(1,n’) by using co-domain

partitioning in the first aléorithm and domain partitioning in the second.

56 CHAPTER 4. APPROXIMATE FORWARD REACHABILITY

Codomain Partitioning Algorithm

This algorithm uses the constrain operator to partition the co-domain of the vecto-
rial function n’ to compute Im(1,n’). The algorithm is a direct application of the

following theorem.

Theorem 3 Letx = {z1,...,2,} be the set of state variables, where each variable z;
has an associated next state function f;. Let £, = [f1,. .., fa] be a vector of functions,

where the individual function f; is represented by a BDD f;(x). Then
Im(1,f) = Im(1,fa1d fo) Az V Im(1,fa_1 1 2 fn) A 2Tn.

Proof: Details of the proof for this theorem can be obtained from [18].

Since we will be using the codomain partitioning algorithm in later parts of this
thesis, we describe it below in more detail. Let x = {z1,...,%,} be the set of state
variables, where each variable z; has an associated next state function f;. The vector

of functions, £, = [f1,. .., fa], whose range is desired, is passed as an argument.

function Codomain _Split(f, = [fi1,- .-, fa))
begin
if (fa = [£i])
if (fi =1) return z;
elsif (fi =0) return
else return 1
else let f, = [f,f,_1)
if (fi=1) return z; A Codomain_Split(fa_1 { f1)
elsif (f; = 0) return —z; A Codomain_Split(fa_1 4 —f1)
else return (ite z, Codomain_Split(f,_1 | fi) Codomain_Split(fa_1 | —f1))

end

The number of recursions needed to compute Im(1,f,) is bound by the number
of elements of the vector f,. Several techniques have been proposed [18] to reduce

the number of recursions through dynamic programming.

4.2. METHODS TO COMPUTE IMAGES 57

Domain Partitioning Algorithm

This algorithm uses the constrain operator to partition the domain of the vectorial
function n’ to compute Im(1,n'). The algorithm is a direct application of the follow-

ing theorem.

Theorem 4 Let x = {z1,...,Z,} be the set of state variables, where each variable z;
has an associated nezt state function f;. Let £, = [fi1,. .., fa] be a vector of functions,
where the individual function f; is represented by a BDD fi(x). Then

Im(1,£) = Im(1,fo 14 z,) V Im(1,fa 1 § ~25).

Proof: Details of the proof for this theorem can be obtained from [18].

Discussion and Comparison

Each of the methods for image computation have their strengths and their weaknesses.
There are some circuits for which transition relation based methods seem to work best,
while there are some circuits for which the transition function based methods work
better. Circuits which have distributed independent blocks that have small local
influence are amenable to early quantification benefits. Hence, transition relation
based schemes would work better on them. But if a circuit has almost every state
variable depending on almost every other state variable, then early quantification
cannot help and the intermediate BDDs can get prohibitively large. Under these
scenarios, sometimes a smart choice of splitting variables can help the transition

function perform a lot better. The following example brings out this point.

Example 4 ! Consider a barrel-shifter with select lines sely, ..., sel, and o data
register ay, ...,y (where m = 2%). The select line bits decide by how many positions
the data in the register should be shifted. Clearly, the next state function for each state
bit in the data register now depends on every other bit of the register. This means that

early quantification cannot help. However if we use the transition function method,

1We thank Ken McMillan for suggesting this simple example.

58 CHAPTER 4. APPROXIMATE FORWARD REACHABILITY

and first split on the sely, ..., sel, variables, immediately all the next state functions

reduce to very simple functions, whose image can be easily computed.

e As a rough rule of thumb, transition relation methods usually have bigger in-

termediate BDDs compared to the transition function method.

e However, the transition function methods are often slow. This is because memo-
ization is often ineffective, because the probability of seeing the exact same

vector of functions is low.

e However, in our application domain of approximate reachability, the number of
codomain variables is much smaller than the number of domain variables. In
this scenario, we found that the codomain partitioning algorithm worked better

than the transition relation method, on the design examples used in this thesis.

e Unlike the transition relation method which requires maintaining one copy of the
state variables to denote the present state x, and another copy x', to encode the
codomain space, the codomain partitioning algorithm only needs one copy of the
state variables x. These variables can be recycled to encode the codomain space
too. Since we will be using the codomain partitioning algorithm, henceforth we
will adopt the convention of encoding the codomain or image space with the
state variables. Thus, if the state variable z has a next state function n,, then

the image of function n, over some set will be encoded by the variable z.

4.3 Computing I'm,, by Multiple Constrain

Recall from Section 3.2 that as we try to compute a superset (i.e. FwdReachqy(qo))
of the reachable states set, the key challenge is to compute projections of the exact
images through Img,(R,n). Recall that

Img,(R,n) = (Sy,...,5) = a(Im(y(R),n(x,y)))

In principle, S; can be computed through the transition relation method, by form-

ing the next state relation for block w; and using early quantification 7, 66]. However,

4.3. COMPUTING IMsp BY MULTIPLE CONSTRAIN 99

this did not work on the larger examples. This led us to look at ways of improvising
on the transition function method of Coudert and Madre [18, 66] to compute BDDs
for the S;’s efficiently.

A naive method to compute the BDDs for the various S;’s would be

1. Compute the BDD for the exact image Im(y(R),n(x,y)).

2. Then obtain the BDD for the various S;’s by projecting the exact image onto

the various w; subsets in w, i.e. S; = o;(Im(y(R), n(x, y)))-

This naive method is not likely to succeed on practical design examples. This is
because the BDD for the exact image Im(y(R),n(x,y)) is a BDD with a very large
support set (basically all the state variables in the design) which will almost always
blow up. Hence, we would like to be able to compute the S;’s separately, without
computing Im(y(R),n).

In fact, this is easy to achieve, and the key observation that makes this possible is
that S; can only depend on the next state functions of the variables appearing in the
4™ block in w, i.e. w;. In our implementation, n(x,y) is represented as a vector of
predicates [ny(x,y),...,nx(x,y)], where each predicate n;(x,y) determines the value
of state variable x; in the next state. Let a;(n) be a new vector containing only the

predicates determining the next state for the bits in w;. Clearly,
Si = Im(y(R),c;(n))

A naive application of the transition function method to compute the BDD for S;

would be as follows:
1. compute a BDD P(x) by doing the explicit conjunction y(R), i.e. P(x) = v(R).
2. Compute a new vector of functions oj(n) = a;(n) | P(x).
3. Compute the desired result through Codomain_Split(c(n)).

The very first step is a potential pitfall. Recall that the explicit conjunction ¥(R)
would result in a big BDD with a support set over the set of state variables x, which

60 CHAPTER 4. APPROXIMATE FORWARD REACHABILITY

can be large for practical design examples, resulting in BDD size blowup. Hence we
would like to avoid computing a BDD for P(x) through the explicit conjunction y(R).

To avoid computing the large BDD for v(R), it is tempting to do a naive serial
constrain and instead constrain the vector of functions c;(n) individually by the
various elements of the tuple R = (Ry,..., R,). This would entail computing c;(n) |
Ry | Ry...} R,. This works well if the supports of R;’s are disjoint. (McMillan has
shown [52] that if g and h have independent support, then f | (gAR)y=(flg)dh)
However, since we have overlapping subsets, the naive method is incorrect. The

following example demonstrates this.

Example 5 Consider the functions f(a1, a2,a3) = a1 Aaz Aas, g(a1,az, as) = a; and
ka1, a2, a3) = ~a1 V (a1 AazAas). Note that the functions g and h have overlapping
support. Now g A h = a; A az A ag which is the same as f and hence f | (gAR)=1
(see properties of constrain in Section 2.5. 2). However, with the naive serial constrain
method, first (f | g) is computed and the result is used to compute (f | g) 4 h. This
results in the function a, V diagas, which clearly does not match f | (g Ah). (We

used the variable order a; < ap < ag for this example.)

Instead, for overlapping projections, we propose the following method of muléi-
ple constrain. The key idea behind multiple constrain is captured by the following

theorem.

Theorem 5 For any Boolean functions f, g and h, if g A h #0, then

fllgnhk) = (Fim)i(gih)

Proof: A detailed proof can be given from the definition of the constrain operator
and using mathematical induction over the number of variables in support of the
functions. However, a simpler proof follows from a slightly different result given
by McMillan [52]. McMillan showed that for any Boolean functions f, p and g, if
p=plagq then f L (pAgqg) = (f I p) | q. Now consider the choice of functions
q=h and p = g | h. From the properties of constrain (see Section 2.5.2), we have
(g 4 k) 4 h = (g | h), thus the requirement that p = p | g is satisfied. Further for

4.3. COMPUTING IMsp BY MULTIPLE CONSTRAIN 61

this choice of functions, pAq = (g1 h) Ah = g A h. Applying McMillan’s result for
this choice of functions, we have f | (g A h) = (f L h) | (g 1 h), which completes the
proof. ’

Theorem 5 allows constraining a function with the implicit conjunction of two
other functions. It can be further extended to allow for constraining a function by

the implicit conjunction of a list of functions.

Corollary 1 For any Boolean function f, and a list of functions (Ry,...,Rp), if
AL_|R; # 0 then

FLRIARA...AR) = (FIR)L((BiA...ARy1) L Rp).

To use this decomposition recursively, we can use the additional distributive property

of constrain, i.e.

(RiA...ARy 1)) L Ry=(Ri L R))A...A(Rp_1 | Rp).

Interestingly enough, the generalized result of Theorem 5 which is directly appli-
cable for our purposes, was actually inspired by an earlier less-general observation
that the range of f | (g A h) is the same as the range of (f J k) | (¢ | h). (The
reader can choose to skip the remaining part of this section and go to Section 4.3.1
directly without any loss of continuity.)

This less-general observation is based on the following key relation between image
computation and range computation. Let (21,...,2) be dummy state bits with

corresponding next state functions (Ry,..., R,), then

Im(y(Ry,. .., Ry), 05(n)) =
Im(1,[e;(n),Ry,...,Rp)) L 21 d z2... | 2.

In other words, we first extend the Boolean function vector o;(n) with (R, ..., Rp),
and compute the range of the extended vector to get the set of next states. Every
point in the range of [o;(n), Ry, ..., Ry] will be “tagged” with the dummy variables
z;, which keeps track of the R,-’suthat were satisfied in the present state. The required

62 CHAPTER 4. APPROXIMATE FORWARD REACHABILITY

Domain Space Co—domain Space

!R1, IR2 IR1,R2 Range—|

of
- function

Relevant Part Relevant Part

of the Domain of the Range

Figure 4.1: Intuition to multiple constrain

image is the part of the range where all the dummy bits (21, ..., 2) are 1 (i.e. where
all the R;’s were satisfied by the present state). Figure 4.1 captures this idea. Select-
ing the cofactors where z; = 25 = ... = 2, = 1 finds the BDD for the relevant part
of the range while eliminating the dummy z; variables. Continuing from Example 5,
the multiple constrain technique would compute (f | h) | (g | h) = 1. Hence, we
get Im(1,(f } h) | (g { h)) = 2 which matches the required correct result since

Im(1,(f 4 (gAh))) = 2.

We can optimize on the usual recursive co-domain partitioning algorithm [18], by
avoiding the computation of the parts of the range that will be discarded. In order
to achieve this, we start with the augmented vector of predicates, [a;(n), R, ..., RBpl,
and constrain each element of the vector with R, (the last element of the vector).
The process is repeated again where each element of the new vector is constrained by
the new R,_;. This process of constraining every element of the vector by the next
constrained R; is repeated p times until the elements of the vector are constrained
by the final R;. Thereafter, we do the standard co-domain recursive range compu-
tation through the Codomain_Split algorithm (as given in Section 4.2.2). The final

algorithm is defined more formally in Section 4.3.1.

4.4. OPTIMIZATIONS 63

4.3.1 Multiple Constrain Algorithm

Using the result of Corollary 1, we can formally define the algorithm for computing

the image of an implicit conjunction of BDDs.

function Immc((Ri,-.-sRp)s P15+ sTm))
V= [Ny, ey, Ry, oy Ry
for j=p down to I by 1 do
if (v[m + j] == 0)
print “domain empty” as y(R) =0
return 0
else
v+ vlvm+j]
endfor
return Codomain_Split([v[1],...,v[m]])

Our least fix-point routine starts with R: (0,...,0) and computes the tuple

Reach,y as,
1fp R.(e(go) U (Imme(R, c1(n)), . . ., Imimc(R, ap(n))

Our algorithm most closely resembles the RFBF algorithm proposed by Cho et
al. [12], but differs in that we allow for overlapping projections and compute the image
for each block with our new Immy. operator. It is also straightforward to do MBM,
TFBF, TMBM [12], LMBM [54] traversals using overlapping projections. |

4.4 Optimizations

BDD-based algorithms rely on memo-ization heavily to get efficiency. In the algo-
rithm Codomain_Split, the cache stores entries where the tags are vectors of functions
and the data is the corresponding image BDD. Getting cache hits becomes a low prob-

ability event since now we need a vector of functions to match. Several optimizations

64 CHAPTER 4. APPROXIMATE FORWARD REACHABILITY

have been proposed [18] to help increase the cache hit rate and reduce the number of
recursions.

The Codomain_Split algorithm takes f, = [fi, ..., fu] s an argument, where each
f; is the next state function for some state variable z;. Another simple optimization
is to sort the functions in the vector f, so that f;’s in the vector appear in the same
order as the z;’s appearing in the global variable order. Thus, if z; < z; in the variable
order, then f; should appear before f; in the vector f,. As a result, the BDD that is
being recursively created by Codomain_Split is aligned with the variable order at all

times.

4.5 Choosing the Collection of Subsets

The quality of approximation is highly dependent on the choice of subsets. The
key intuition is that since interaction and correlation between state bits in different
subsets is lost, we should try to ensure that state bits which are highly dependent or
correlated with other state bits, should be in the same subset as the bits they depend

on or correlate to.

4.5.1 Leveraging High level Information

For the design examples from the MAGIC [45] chip, we had access to the high level
design description in Verilog [63]. This enabled leveraging off some high level infor-
mation that can be deduced by inspecting the design description. Our scheme for
choosing the collection of subsets is presently manual.

First, we find the FSMs by inspecting the HDL source (we had access to the RTL
description for our design examples). For each state bit z;, a score is computed by
counting the number of predicates n;(x,y) it supports. To each machine, a score is
assigned which is the sum of the scores of its state bits. The two machines (M, M>)
with the highest scores are identified as master FSMs. If the state bits of machines
M; and M; support the bits of the master machine M, in their next state predicates,
then M; and M; are slaves of M;. The different slave machines for each of the master

4.5. CHOOSING THE COLLECTION OF SUBSETS 65

FSMs are identified. Blocks are formed by pairing the master FSMs with their slaves.
Thus, in this case, the blocks (M, M;) and (M, M;) are added to the collection of

subsets.

Often some FSMs are very small. The corresponding small blocks can then be
aggregated with other blocks without running into intermediate image BDD size
explosion. The converse problem is some FSM, say M;, may have large state registers,
resulting in big blocks. If so, we try to prune these blocks by exploiting the small
interface phenomenon, described in Section 3.2.2. A block with the master FSMs is
also added, to capture the correlation between the FSMs. We ensure that no block
w; in the collection w is a proper subset of another block w; € w, since this would

clearly be wasteful.

4.5.2 Structural Methods for Gate Level Net-lists

Cho et al. [11] proposed several heuristics to choose the collection of subsets when
a design is available in a gate level net-list form (as is the case with the ISCAS-89
benchmark suite). They proposed different metrics to quantify the dependence and
correlation between different state variables in a net-list. We use the same choice of
subsets as given by their heuristics as an initial starting point, and then add more

bits to allow for overlap.

The heuristic to add more overlap bits on top of the choice of subsets from Cho
et al. [12] is as follows. Let (z1,...,Z10) be ten different state variables in a block,
and let (ny,...,n10) be the associated next state functions for the state bits in the
block. The state variable z; (where z; & {z1,...,Z10}), which appears in the support
of most of the (ny,...,ny) functions, is identified. The subset (z1,...,Z10) is then
augmented by adding the state variable z; to it. This simple heuristic tries to add
more bits to capture the dependence interaction between state bits, and has helped

to improve the quality of approximation by orders of magnitude.

66 CHAPTER 4. APPROXIMATE FORWARD REACHABILITY

4.6 Experimental Results

The experimental implementation of the method was in LISP, calling David Long’s
BDD package [48] (implemented in C) via the foreign function interface. The method
was evaluated on a collection of control circuits from the MAGIC chip, a custom node
controller in the Stanford FLASH multiprocessor [45]. For comparison with earlier
work, results when applied to the publicly available ISCAS89 benchmark circuits
are also presented. The approximate algorithm returns a superset of the reachable
states, which is also an invariant of the design. To quantify the size of the superset,
the satisfying fraction of the the superset is computed. (Please refer to the Appendix
of this chapter in Section 4.8 for the algorithm that was used to compute an upper
bound on the satisfying fraction). Since projection induces an over-approximation,

the smaller the satisfying fraction, the stronger the invariant.

The maximum number of BDD nodes (BDD Node Limit) for each experiment
(i.e. for each row in the following tables) was preset. Initially the collection of
subsets, w, has small sized disjoint subsets and these subsets incrementally become
larger, until the experiment requires more BDD nodes than set in the limit. To
this collection of disjoint subsets giving the best result within the node limit, small
overlap bits were added as per the heuristics given earlier (Section 4.5). Thus, by
staying within the bounds of the node limit, the strongest invariant obtained with
overlapping projections is compared to the strongest invariant obtained with disjoint
partitions. The column Subsets lists different choices of the collection of subsets, w,
where the size of subsets increases as we go down a table. The same variable ordering

was used for both the schemes.

Nodes keeps track of the peak number of nodes that existed at a time during
the experiment. The Iter column lists the number of iterations needed to reach
the fix-point. The last column under the heading Ratio is the ratio between the
satisfying fraction with disjoint partitions and the satisfying fraction with overlapping
projections. Thus, the higher the figures in the Ratio column, the stronger is the

invariant with overlapping projections.

4.6. EXPERIMENTAL RESULTS 67

4.6.1 Results on Design Examples from FLASH

The following tables summarize the results obtained on the various FLASH I/O mod-
ules (in the order I0InboxQCtl, ReqDecode, RegService, IOMiscBusCt! and Pciln-
terface) as we compare earlier schemes of approximations by disjoint partitions [12]
with the new scheme of approximations by overlapping projections. Note that for
a given node limit budget, overlapping projections consistently result in tighter ap-

proximations than their disjoint partition counterparts.

Table 4.1: I0InboxQCtl design example results

Subsets Disjoint Partitions Overlapping Projections || Ratio
Sat. Fr. | Iter | Nodes || Sat. Fr. | Iter | Nodes

W 5.005e-03 | 20 | 28254 || 5.005e-03 | 20 | 28254 | 1.000

Wo " ? ” 4.944e-03 | 20 | 53740 | 1.012

ws3 ? ” ” 3.967-03 | 20 | 64462 || 1.262

wy 3.967e-03 | 20 | 76630 || 3.967e-03 | 20 | 64462 || 1.000

Table 4.1: Note that to improve upon the invariant with satisfying fraction 5.005e-
03, in the case of disjoint partitions, the BDD node count had to jump from 28,254 to
76,630. which is a 2.71 times increase in the BDD node count. The last entry under
disjoint partitions was computed with all the state variables in a single block, which
clearly gives the strongest possible invariant. Overlapping projections produces this

same strong invariant at a lower node count.

Table 4.2: ReqDecode design example results

Subsets Disjoint Partitions Overlapping Projections | Ratio
Sat. Fr. | Iter | Nodes Sat. Fr. | Iter | Nodes

w 2.185e-05 | 20 | 33408 || 2.185e-05 | 20 | 33408 |l 1.000

Wo 2.108e-05 | 20 | 134536 || 1.979e-05 | 20 | 171448 | 1.065

w3 1.274e-05 | 33 | 980968 | 1.018e-05 | 20 | 608726 | 1.252

Wy i ” » 8.156e-06 | 20 | 1195109 || 1.562

wWs 3.169e-06 | 25 | 2032890 || 3.169e-06 | 25 | 2032890 || 1.000

Table 4.2: For the choice of subsets, w3 and wy, the algorithm with overlapping
projections yields stronger invariants (by a factor of 1.252 and 1.562 respectively).

68 CHAPTER 4. APPROXIMATE FORWARD REACHABILITY

Furthermore, for the choice of subsets wj, the algorithm with overlapping projections
uses fewer BDD nodes compared to the RFBF runs with disjoint partitions, and at

the same time gives a stronger invariant.

Table 4.3: RegService design example results

Subsets Disjoint Partitions Overlapping Projections || Ratio
Sat. Fr. | Iter | Nodes Sat. Fr. | Iter | Nodes
Wi 1.658e-02 | 34 23662 1.658e-02 | 34 23662 1.000
A D) 1.352e-03 | 44 | 407728 || 1.053e-03 | 37 | 470642 | 1.283

w3 ” ? ” 1.039e-03 | 40 | 537578 || 1.300
Wy 7 ” ” 1.039e-03 | 40 | 1776965 || 1.300
ws 7 7 ” 1.036e-03 | 44 | 1995305 || 1.304
Wg 1.036e-03 | 44 | 11007330 " " ” 1.000

Table 4.3: With disjoint partitions, the node count penalty goes up from 407,728 to
11,007,330 (a factor of 27) before any improvement in the strength of the invariant.
The last entry under disjoint partitions was computed with all state variables in a
single block, which gives the strongest invariant. Note that the same invariant is
obtained by the overlapping projections scheme at a much lower node count penalty
(1,995,304 nodes vs 11,007,330 nodes, which is lower by a factor of 5.517).

Table 4.4: IOMiscBusCtl design example results

Subsets Disjoint Partitions Overlapping Projections | Ratio
Sat. Fr. | Iter | Nodes Sat. Fr. | Iter | Nodes
w) 4.211e-04 | 4 104135 || 4.211e-04 | 4 104135 1.000
W2 3.810e-04 | 4 | 1173863 || 2.727e-05 | 4 | 1244294 | 13.973
W3 » ? ” 5.342¢-06 | 4 | 1353024 | 71.329
Wy 5.342e-06 | 4 | 2556733 ” ? ” 1.000

Table 4.4: Note that for the choice of subsets wo and w3, the algorithm with over-
lapping projections yields significantly stronger invariants (by a factor of 13.973 and
71.329 respectively), at only an incremental additional cost in terms of BDD node
count. Figure 4.2 is a plot of the satisfying fraction of the final result vs the peak

number of BDD nodes. Since a lower satisfying fraction implies a stronger invariant,

4.6. EXPERIMENTAL RESULTS

4.5

35

15

Satisfying Fraction of Final Invariant

0.5

10MiscBusQCt! Invariant Strength

T T 1 T

+ + Disjoint
o o Overlap

1. . .

0.5

Figure 4.2:

1 15 2 2.5

Peak Number of BDD Nodes < 10°

I0MiscBusCtl: Projections vs Partitions

69

70 CHAPTER 4. APPROXIMATE FORWARD REACHABILITY

it is expected that lower satisfying fractions would incur a higher BDD node count
penalty. The solid curve for overlapping projections is considerably below the other
curve for disjoint partitions, indicating that overlapping projections give stronger

results with lower BDD node counts compared to disjoint partitions.

Table 4.5: Pcilnterface design example results

Subsets Disjoint Partitions Overlapping Projections | Ratio
Sat. Fr. | Iter | Nodes Sat. Fr. | Iter | Nodes

W 3.574e-03 | 21 | 283186 | 1.168e-04 | 50 228390 || 30.593

Wo 1.041e-05 | 55 | 598257 || 1.041e-05 | 55 598257 1.000

W3 0.463e-07 | 71 | 1616055 || 6.311e-07 | 71 | 1293062 | 1.499

Wy ? ” ” 1.595e-07 | 71 | 20851528 || 5.932

Table 4.5: The final result with overlapping partitions is much stronger (by a factor
of 5.932) than that obtained with disjoint partitions. Note that even as the size of
the subsets increases from wj to wy, there is no improvement in the disjoint partition
case. (The choice of subsets w3 was relative to a node limit of 2 million nodes, while
the choice of subsets w4 was relative to a node limit of 25 million nodes. Thus, even

as the node limit is raised significantly, no improvement of the result is obtained by

using the disjoint partition based scheme.)
4.6.2 Results on ISCAS-89 Benchmark Circuits

Table 4.6: Large circuits from ISCAS-89 benchmark suite

Circuit | State Bits | Input Bits
s1423 | 74 17
$13207 | 669 31
s15850 | 597 14
s38584 | 1452 12

The algorithm was also evaluated on the bigger benchmarks in ISCAS 89 bench-
mark suite. Table 4.6 gives some information on the size of these circuits. The

partitions used by Cho et al. [12] were used to identify the FSMs in the design. For

4.7. CONCLUSIONS 71

the overlapping projections case, variable subsets were set (as per the heuristic given
in Section 4.5) by adding small overlaps to some of their blocks. Wé are unable to
report comparative figures for s35932, because we could not procure the partitions
used by Cho et al. for s35932. In the case of of 5378, our version of 5378 had 179 flip
flops as opposed to the 164 flip flops in the one used by Cho et al. Table 4.7 has details
of the results on the remaining benchmarks. Note that there is orders of magnitude
improvement in the strength of the invariant for s13207 and s38584. The numbers in
Table 4.7 under overlapping projections are upper bound estimates of the satisfying
fraction of the final invariant. Thus, the invariant with oveﬂapping projections is

stronger, at least by a factor equal to the figures under the Ratio column.

Table 4.7: ISCAS 89 benchmarks: Size of approximate forward reachable set

Ckt Disjoint Partitions Overlapping Projections Ratio
Sat. Fr. Iter | Nodes Sat. Fr. Iter | Nodes
s1423 | 2.985e-03 | 37 | 310461 || 2.193e-03 | 248 | 1032286 1.361
s13207 |.3.421e-106 | 10+6 | 161447 || 1.136e-115 | 10+5 | 198779 || 3.321e+08
515850 | 5.840e-102 | 10+5 | 271093 || 3.938e-102 | 10+4 | 336048 1.483
538584 | 6.494e-41 | 10+2 | 646258 || 5.764e-57 | 10+5 | 1853461 | 8.876e+15

The numbers under the Disjoint Partitions column correspond to the results obtained
by running TMBM [12] approximate traversal algorithm for the circuits: 513207,
515850, s38584, and RFBF [12] approximate traversal algorithm for the circuit: s1423.
The same partitions used by Cho et al. [12] were used here. The TMBM traversal
algorithm starts off as TFBF and switches to MBM after a few iterations. Since we
are using TMBM algorithm for some circuits, the Jter column in Table 4.7, lists the
number of iterations of doing TFBF + the number of iterations in the outer greatest
fix-point of MBM.

4.7 Conclusions

Overlapping projections has proved to be a very effective approximation scheme. It
has enabled orders of magnitude improvement in the size of the superset returned

72 CHAPTER 4. APPROXIMATE FORWARD REACHABILITY

by the approximate analysis, when compared against earlier approximation schemes.

Our experiments show that a small amount of appropriately chosen overlaps in a

given projection can substantially improve the quality of the over-approximation.
Multiple constrain has proved to be an efficient method to compute the image of

an implicit conjunction of BDDs with possible overlapping support, using Boolean

function vectors.

4.8 Appendix

4.8.1 Approximating Sat_Fr of Superset

The approximate least fix-point routine returns a list of BDDs, S : (S1,-..,Sp) cor-
responding to the collection w : (wy, ..., w,). The implicit conjunction of the BDDs
in the list S represents a superset of the reachable state space. In order to quantify
the number of states in the superset, the satisfying fraction of ¥(S) is to be com-
puted. Schemes that rely on first building the BDD for 7(S) and then computing the
satisfying fraction of the resulting BDD will usually fail, because it is prohibitively
expensive to build a BDD with the explicit conjunction through +.

To the best of our knowledge, computing the exact satisfying fraction of y(S) by
merely manipulating the individual BDDs in the list S is not possible. (If elements of
S had mutually disjoint support, multiplying the satisfying fractions of the individual
BDD:s in the list would suffice. This is because, under the assumption of mutually
disjoint support sets of the various BDDs in the list S, the following result holds:

Y 1sat_fr(S;) =sat_fr(/\f=15,~).)

But in this scheme of approximation with overlapping projections, different BDDs
in the list S are expected to have overlapping support. Hence, we settle for an
algorithm that compute an upper bound on sat_fr of 7(S). The greedy algorithm
defined below achieves this by computing sat_fr of a superset of ¥(S). It uses the fact
that Ja.(f A g) C (Ja.f) A (3a.g),

A set Z is used to keep track of the variables to hide existentially, before computing
sat_fr of each block. At every step the BDD Sy, with the lowest sat_fr (after hiding

4.8. APPENDIX 73

existentially variables in Z from S,), is picked. Its sat_fr is cumulatively multiplied

to f, and variables in wy, are added to the set Z.

Z+ 0, f+1.0

for j=1up to pby 1do
find m, s.t. Vi.(sat_fr(3Z.5,,) < sat_fr(3Z.S;))
f + f x sat_fr(3Z.5,)
Z +— ZUwpy

endfor

return f

The Monte Carlo simulation technique, an alternative method to estimate the
satisfying fraction of y(S), appears to be ineffective because of the extreme sparseness
of the state space covered by y(S). To get estimates with a good confidence interval,

a prohibitively large number of samples would be needed.

74

CHAPTER 4. APPROXIMATE FORWARD REACHABILITY

Chapter 5

Approximate Backward
Reachability

The general himself ought to be such a one as can at the same time see both

férward and backward. — Plutarch.

This chapter first defines the key challenge in symbolic backward reachability, namely
the pre-image computation problem. Existing methods of BDD based pre-image
computation are briefly reviewed. A new pre-image computation method, which
allows for efficient computation of projections of exact pre-images, is defined. This
method of backward reachability is combined with the forward reachability method
of the previous chapter. A simple heuristic to generate counterexample paths (from
the initial state to the error states) from the resulting approximations is presented.
Finally, the results obtained by applying this method to different design examples are

presented.

5.1 Basic Algorithm

Computing the set of states that can reach certain states is a key part of model check-

ing. In Section 2.3, we saw how BDDs can be used to represent Boolean functions,

75

76 CHAPTER 5. APPROXIMATE BACKWARD REACHABILITY

sets of states, and relations. This enables the modeling of synchronous hardware
designs with BDDs.

Let g be a set of states that satisfies a user specified property (represented by
the BDD g(x)). The BDD —g(x) represents the set of states that violates the user
specified property. It is important to know if any of the states in the set, represented
by —g(x), are reachable from the initial states.

We wish to compute a BDD R(x) that represents the states that can reach the
error states g via the transition relation 7' (represented by the BDD T'(x,x')). We
first consider the problem of finding those states R;, that can reach —g in at most

one step. This set of states is given by
R = —gU{s|3 [€gA(ss)eT]}

Given the BDDs —g(x) and T(x,x'), we can compute a BDD representing R, by

performing the logical operations corresponding to the above expression:
Ri(x) = —g(x)VvI'- [-g(x') A T(x,x)].

Similarly, the set of states that can reach —g in at most two steps is represented by
Ry(x) = —g(x)VIX'-[Ri(X) AT(x,x)].

In general, the set of states that can reach —g in at most n + 1 steps is represented

by

Bapi(x) = —g(x) V 3x' - [Ra(x') AT(x,)]

Note that each set of states is a superset of the previous one. Since the total number
of states in a hardware design is finite, at some point we must have Ry, = R,. No
further states can possibly reach the error states —g. If the initial states set go does
not intersect with the set R,, then we can safely conclude that the error states are

5.2. METHODS TO COMPUTE PRE-IMAGES (s

definitely not reachable from the initial states. On the other hand, if the initial states
set go does intersect with the set R, it means there exists a counterezample path
starting from the initial states and ending in the error states —g. Such a counterex-
ample path has immense debugging value, since a designer can inspect it and exactly

locate the problem.

5.2 Methods to Compute Pre-images

The key step in the high level algorithm outlined earlier is computing the one step
predecessors of a set of states. This is widely referred to as pre-image computation.
Existing methods of BDD based pre-image computation can be broadly classified into

two categories.

5.2.1 Transition Relation Approach

As outlined in the previous section, this method relies on building BDDs to represent
the transition relation T(x,x') of the circuit. The key problem is computation of the

relational product:
R(x) = 3x'-[R'()AT(x,x)].

A close look reveals that the pre-image computation, using the transition relation,
is symmetrical to the image-computation problem we saw in Section 4.2.1. The only
difference is that instead of quantifying out the x (present state variables) variables,
pre-image computation involves quantifying out the x’ (next state versions of the
state variables) variables.

Just as in the image computation case using transition relations, the pre-image
can be computed using the normal BDD algorithms for restriction and Boolean con-
nectives. However, it does not work well in practice for large designs. This is because
the basic algorithm requires having T'(x,x’) as a monolithic relation, consisting of a
single BDD. Unfortunately, for most practical designs, this BDD is very large. It is

much more efficient to use a special purpose algorithm, based on partitioned transition

78 CHAPTER 5. APPROXIMATE BACKWARD REACHABILITY

relations. The problem is now of the form
R(x) = 3 [R(x) A (ti(x,2}) Ata(x,25) Ao At(x, 77,))]-

The main difficulty in computing R(x) without building the conjunction is that exis-
tential quantification does not distribute over conjunction.

Similar to the case of image computation using transition relations, the BDD R(x)
for the pre-image can be efficiently computed using early quantification optimizations
(Section 4.2.1).

5.2.2 Function Substitution Approach

For deterministic systems, Filkorn [26] proposed an alternative to the transition re-
lations based method of computing pre-images [7, 47]. Filkorn [26] showed that the
pre-image of a set, represented by a BDD Q(x), can be obtained by substituting the
state variables in 'Q(x) with their corresponding next state functions.

BDD packages usually have support for a compose operation, whereby a variable
in a BDD can be substituted with a function. In the functional substitution approach,
the computation of the pre-image of a set represented by the BDD @Q(x), is done as

follows:
1. Rename the x variables in Q(x) to their primed versions to obtain Q(x')

2. for each z! in the support of Q(x'), substitute the next state function of z; for

each occurrence of z} in Q(x').

3. existentially quantify out the input variables from the resulting BDD to obtain

the required pre-image.

Filkorn [26] argued that in the case of deterministic synchronous digital circuits,

a functional instead of a relational representation results in more compact BDDs.

5.3. COMPUTING PREsp BY DOMAIN COFACTORING 79

5.3 Computing Pre,, by Domain Cofactoring

Now let us try to apply the function substitution method to our applications. Recall
from Section 3.2 that as we try to compute a superset (é.e. BackReachqp(—g)) of the
states that can reach the error states, the key challenge is to compute projections of

the exact pre-images through Pre,,(R,n). Recall that

Pregy(R,n) = (Sy,...,5p) = o Pre(y(R), n(x,)))-

In principle, S; can be computed through the transition relation method, by form-
ing the next state relation for block w; and using early quantification (7, 66]. However,
this did not work when we tried it on larger examples. This led us to look at ways to
improvise with the function substitution method of Filkorn [26], to compute BDDs
for the S;’s efficiently.

A naive method to compute the BDDs for the various S;’s would be

1. Compute the BDD for the exact pre-image Pre(y(R),n(x,y)). This could be
done by either the transition relation based method or by the function substi-

tution method.

2. Then obtain the BDD for the various S;’s by projecting the exact pre-image

onto the various w; subsets in w, i.e. S; = a;(Pre(Y(R),n(x,¥)))-

This naive method is not likely to succeed on practical design examples. This is
because the BDD for the exact pre-image Pre(y(R),n(x,y)) has a very large support
set (basically all of the state variables in the design), which will almost always lead to
BDD size blow up. Even though the final BDD for S; is expected to be small because
of its restricted support within w;, this method requires us to pay the prohibitively
expensive price of first building a big BDD for Pre(y(R),n) and then hiding some
variables to get the smaller sized BDDs for S;. It is important to be able to compute
the S;’s separately without computing Pre(y(R), n).

Our method for computing S; involves recursively splitting the domain variables

in w;. This not only allows us to directly compute S; without computing the exact

80 CHAPTER 5. APPROXIMATE BACKWARD REACHABILITY

pre-image, but also allows the existential quantification to be done on the fly. As
we split on a variable v in w;, we create two subproblems. After splitting on all the
variables in w; we have created a large number of subproblems, but each of these
subproblems can be solved easily. This is because after fixing the values of all the
state variables in wj, all the functions typically get simplified to small BDDs with
support outside w;. At this point, the BDD we are constructing for S; depends only
on whether the substitution of functions in y(R) results in a satisfiable function. If
so, we return 1 for the recursive BDD computation, otherwise we return 0.

Initially each state variable z; in R is renamed to z; to avoid conflicts. Let o be a
map from each z/ to the function that is to be substituted for it. Initially, o maps
to the next state function of z;. As the splitting process starts, o gets modified. Once
a function from o is substituted in the R;’s, it is removed from o. Thus, if we let |0
denote the number of functions in o left to be substituted, this can only decrease as
the recursion unfolds, and we use this to define the terminal case of the recursion.

The recursive algorithm Prey, (the subscript dc denotes “domain cofactoring”)
takes as argurnenfs the current substitution, o, the current approximation R, the ap-
proximate reachability set from the previous forward pass I, and the set of variables
w; to project onto. I is used to prune pre-image states that are definitely not reach-
able. (The algorithm shown below to compute S;, assumes there are only two subsets
in our collection w. The extension to an arbitrary number of subsets is obvious. We

use | to denote the ordinary cofactor operator.)

function Preg.(o,[Ry,. .., Ry, [I1,- .., I, w;)
if (I ==0) or ...or (I, ==0)) return 0
if (|o| ==0) return Ry AR, A...AR,
v 4 next variable from w; to cofactor on
t + Preg(o v, [R1 4o, -+, Bp Lols [T dvy - -, Ip do), ;)
e + Preg.(o |5, [R1 d5,-- -, B2 Lol [11 4oy - -+, L2 L), wj)
result <+ ite(v,t,e)

return result

5.3. COMPUTING PREsp BY DOMAIN COFACTORING 81

The following optimizations reduce the number of recursive calls to Preg,:

e We use the invariant generated by approximate forward reachability, 7.e. 1 =
(I, I), to prevent the approximate pre-images from including states that are
definitely unreachable. Notice that we split the elements of the tuple I at each
step, and return 0 if any element of I reaches its 0 node. This results in an
on-the-fly conjunction of the approximate pre-image with the invariant. In our
experience, this significantly reduces the number of recursion steps. The fact
that overlapping projections result in tight over-approximations helps to prune

away many unnecessary recursion steps.

e The substitution o only includes functions that need to be substituted into the
R;’s. Further, if at any point the support of a function in ¢ is wholly contained
inside wj, it is immediately substituted into the R;’s and thereafter removed
from 0. When |o| = 0, all the the support of all R;’s is contained in wj, so the

algorithm computes their explicit conjunction and returns.

Note that because of this “early substitution” of some functions, the variables
in R are initially renamed to their next state versions. This ensures that we
do safe substitution and that the various substitutions don’t interfere with each
other. As the recursion unfolds, the support of the R;’s starts including both
the present state variables x and their next state versions x'. Because of the
possible presence of the present state variables in R we need to cofactor the

R;’s with the splitting variable v for the subsequent recursive steps.

Thus, if the recursion gets to a stage where all the functions in o have support
within {w;Uy}, then all functions in o are substituted in the various R}s. Then
the Rls are explicitly conjuncted and after that the inputs are existentially
quantified. This step almost suggests that the algorithm finds the pre-images
of individual R;’s and then conjoins the individual pre-images. Even though, in
general, pre-images of relations do not distribute over conjunctions, this step is
justified in our case. This is because the underlying model here is deterministic

Mealy machines (which have next state functions), and because the inputs are

82

CHAPTER 5. APPROXIMATE BACKWARD REACHABILITY

removed at the end. Please refer to the Appendix of this chapter for a formal

proof of this claim.

The algorithm splits only on the variables in w;. Before choosing the next
variable from w; to split upon, we make sure that the variable v appears in
the support of some function in o. If it doesn’t, we skip it and try the next

candidate from w;.

After cofactoring on variables in w;, the support of the functions in o is disjoint
from w;, and now the result of Preg is either 0 or 1. At this point, we need
to check if there is some assignment to variables in (x — w;) that lies in the
pre-image of y(R), where R : (Ri(wi),..., Bp(wp)). Let T,(x,y,x') denote
the implicitly conjoined transition relation, T, (x,y,x') = NE_ (2 = ni(x, y)),
where n;(x,y) is obtained from o. (Note that since we have already cofactored
on all of the variables in w;, at this point the support of Ty (x,y,x') includes

only those state bits not in w;).

We are interested in knowing if 3x’(R; (w})A. . ARy (w))AT6(x,y,x')) is 0 or not.
Clearly, this can be reduced to checking if (Ry(w}) A ... A Rp(w},) AT, (x,y,%))
is 0 or not. Please see the Appendix of this chapter to see how the multiple
constrain operator is used in a novel fashion to solve this satisfiability problem

of an implicit conjunction of BDDs.

This approach worked fine on all the examples that were tested; however, in

case of BDD blowup, the algorithm could return a conservative value of 1.

5.4 Combining Forward/Backward Reachability

Using I'mmp. and Preg., we compute an over-approximation of the set of states that

are on a path from the initial state to an error state. If the traversals were exact, this

set of states could be computed by a single forward and backward pass. However,

since the images and pre-images are approximate, additional passes may increase

the accuracy of the result. In more detail, each step of each forward and backward

5.4. COMBINING FORWARD/BACKWARD REACHABILITY 83

traversal is intersected with the set of states computed by the previous traversals. We

alternate forward and backward traversals until the set of states no longer changes.
Given a designer provided invariant g(x), we will use g to denote the “good”

states and —g to denote the “error” states. The algorithm for the iterative refinement

technique can now be described as follows:

function BackAndForth (g)

Rf < (0,...,0)

Ry« (1,...,1)

while (R; # Rp) do
Re < Ifp R.(a(q) U (Imgp(R,n) MRy))
if (y(R¢) = g) return “no errors”
Ry + lfp R.(a(ng)U (Preg(R,n) N Ry))
if (v(Rp) A o =0) return “no errors”

endwhile

return Rg

The y(R¢) — g implication check can be done efficiently through a multiple
constrain image computation, without having to explicitly build the BDD for v(Rg).

Lemma 3 Let R be an implicitly conjuncted list of BDDs (Ry, ..., Rp), then y(R) —
g iff Im(v(R),g) = {1}.

Proof: The proof relies on the observation that y(R) — g implies that the function
g evaluates to true on every state in the set y(R). In other words, the image of the
function g over the set v(R) can only be the singleton set {1}.

Similarly, the v(Rp) A go = 0 check can be done efficiently through a multiple
constrain image computation, without having to explicitly build the BDD for 7(Rp)-

Lemma 4 Let R be an implicitly conjuncted list of BDDs (Ry, . .., Ry), then (y(R)A
0) = 0 iff Im(y(R), q) = {0}.

84 CHAPTER 5. APPROXIMATE BACKWARD REACHABILITY

Proof: The proof relies on the observation that (y(R) A q) = 0 implies that the
function qo evaluates to false on every state in the set y(R). In other words, the
image of the function qo over the set y(R) can only be the singleton set {0}.

If the function BackAndForth above is unable to prove the designer provided
invariant g, then it returns a tuple R, where v(R) represents the set of states that
can be approximately reached from the initial set gy, and which can approximately
reach the error states —g. In order to further refine the over-approximation, we now
choose a collection of larger subsets w, and repeat the whole process. However, while
doing the forward and backward traversals this time around, we can still use the set

R returned earlier, to constrain the search for a path to the error states.

5.5 Optimizations

The Preg, algorithm splits on the variables in w; while computing the BDD for S;.
A simple optimization is to sort the order in which the splitting variables from w; are
picked. If v; < v, in the global BDD variable order, and (v; € w;), (v2 € w;), then
we should split on v, before splitting on v while computing S;. This ensures that
the BDD, being recursively created by Prege, is aligned with the variable order at all

times.

5.6 Counterexamples

If BackAndForth fails to rule out an error, it is useful to check whether there is an
actual error by generating an example path from go to a state that does not satisfy g.
This both confirms the existence of an error and provides debugging information to
the user. In exact reachability analysis, if an error state is reachable from an initial
state, it is straightforward to construct a specific path from the initial state to an
error. However, in this approximate analysis, such a path may or may not exist.
Starting from the error states, the algorithm computes approximate pre-images
(intersected with the set of states seen in the previous pass) and stores the pre-
images obtained at the various iterations of the fix-point algorithm in a stack. Let

5.6. COUNTEREXAMPLES 85

Approximate Layered "Tube” at the end of function ’BackAndForth’

T2 T3
Ir\\
’ N
T1 FAERN
T0 / error Y|
)
)
. states |
s0 d

. P
o g
~ o s2 ’ [y

initial (-, st |]l 3
state ‘\‘-"""-_— ...

’

Figure 5.1: Counterexample generation from approximations

Ty, T1, - .- T (where T,, intersects with the error states, and T intersects the initial
states) be the final contents of the stack. The contents of the stack represent an
approximate tube through which all counterexamples pass. Hence, the search for a
counterexample can be restricted within the tube. (Note that each element of the
stack is a tuple of BDDs whose concretization represents the states in each layer of
the tube through which potential counterexamples must pass).

A single state, s, is chosen from the intersection go A Tp, and the exact image of
s is computed. If the image of s intersects with T3, a single state s; is chosen from
the intersection and the process is repeated. (Figure 5.1 shows how the algorithm
works). This simple heuristic was able to generate counterexamples over the design
examples used here. This was partly because we assumed an overly general non-
deterministic environment for the small design units, which made it easier to find

some input assignment to lead us to the next layer.
However, note that this simple heuristic is not always guaranteed to succeed and
may get stuck in some state s; in layer T; (where stuck in s; means the image of s;

does not intersect with Tj;1 at all, implying T}, is approximately reachable from s;
1

86 CHAPTER 5. APPROXIMATE BACKWARD REACHABILITY

but not exactly reachable from s;). In Chapter 7, we will further improve on this

simple heuristic to tackle this problem.

5.7 Experimental Results

The method was evaluated on a collection of control circuits from the MAGIC chip,
a custom node controller in the Stanford FLASH multiprocessor [45]. The circuits
are control intensive; the state bits do not include data path bits. Table 5.1 gives a

brief description of the various control modules in the I/O unit.

Table 5.1: Control modules in I/O unit in FLASH

Module State Bits | Input Bits
IOInboxQCtl | 23 8
RegDecode 37 27
RegService 41 58
IOMiscBusCtl | 44 18
Pcilnterface 88 95

The experimental implementatidn of the method was in LISP, calling David Long’s
BDD package (implemented in C) via the foreign function interface. The properties
to prove were invariants provided by the designer. (Traditional benchmarks, such as
ISCAS 89, do not come with specified properties, so they could not be used here.) The
maximum number of BDD nodes was limited to 10 million nodes for each experiment.
The variable subsets in w = (wy,...,w,) were chosen manually using the heuristics

described in Section 4.5.

Results

In the tables below, Inv lists the property to be proved. The column under P gives
the results of the verification effort. A ‘Y’ means that property was proved, ‘N’ means
a counterexample was generated, and ‘?’ means that the verification exercise could

not be completed.

5.7. EXPERIMENTAL RESULTS 87

The column labeled Nodes reports the maximum number of BDD nodes that
existed at a time during the experiment, and Time reports the cpu time (in seconds)
to complete the experiment on a MIPS R4300 with 768MB main memory (the cpu
time includes time spent during LISP garbage collection).

The Ezact column shows results of the exact pre-images of the error states, when
it was possible to compute them. The exact pre-images were computed relative to the
approximate reachable set computed during the first forward pass of the approximate
algorithm. The same variable ordering was used in all the examples to get the numbers
for the Ezact method and the Approzimate method.

Table 5.2: Note that our approximate scheme is able to prove every invariant that
could be proved by the exact approach. Furthermore, in the case of properties p3 and
p5, there is a decrease in the number of BDD nodes used by our approximate scheme,

compared to the number of nodes used by the exact method.

Table 5.2: Proving I0InboxQCtl invariants

Inv Exact Approximate

P | Nodes | Time || P | Nodes | Time
pl | Y| 4,216 | 95 || Y| 4,196 | 10.8
p2 | Y| 4408 | 95 [Y| 4,312 | 108
p3 | N | 112,257 | 80.6 || N | 75,600 | 88.0
pi Y| 5,619 9.5 Y | 4,850 | 10.8
p5 || N {119,710 | 81.0 || N | 79,619 | 86.4

Table 5.3: These smaller examples (I0InboxQCtl and ReqDecode) demonstrate that
our approximate scheme uses significantly fewer BDD nodes to prove the invariant,
compared to the exact method. In the case of property p2, the difference is almost

one order of magnitude.

Table 5.3: Proving ReqDecode invariants
Inv Exact Approximate
P | Nodes | Time | P | Nodes | Time
pl | Y| 97,362 | 52.2 || Y | 42,954 | 49.9
p2 || Y | 680,107 | 76.1 || Y | 88,213 | 59.5

Table 5.4: Note that our approximate scheme is able to prove every invariant that

88 CHAPTER 5. APPROXIMATE BACKWARD REACHABILITY

could be proved by the exact approach. As expected, the approximate approach takes

fewer BDD nodes to prove the invariant.

Table 5.4: Proving RegService invariants

Inv Exact Approximate

P | Nodes | Time || P | Nodes | Time
pl [Y| 95,598 | 517.8 || Y | 74,419 | 419.1
p2 | N | 121,573 | 1276.7 | N | 93,799 | 860.4
p3 | Y| 94,510 | 820.0 || 'Y | 74,419 | 418.5
p4d || Y | 112,367 | 1021.6 || Y | 94,365 | 418.5

Table 5.5: Note that the approximate scheme requires fewer BDD nodes to complete
the verification exercise. The difference in the required number of nodes is also very

large.

Table 5.5: Proving IOMiscBusCtl invariants
Inv Exact Approximate
P | Nodes Time || P | Nodes | Time

pl || N | 2,936,929 | 1031.5 || N | 512,469 | 301.5
p2 | Y | 1,791,385 | 850.4 || Y | 426,324 | 302.3

Table 5.6: The approximate scheme is able to prove or disprove the property in
all cases, unlike the exact method which fails to complete the verification exercise
for most of the properties in the Pcilnterface design example. Furthermore, the
approximate approach uses fewer BDD nodes to prove or disprove the invariant. The
difference in the required number of BDD nodes is fairly large in most of the cases.
Note that in the case of the Pcilnterface design example, the approximate method
completes the verification exercise well within the 10 million node limit.

For the smaller example of IOInbozQCt, the approximate method marginally
takes more time than the exact method. The time advantage of the approximate
method becomes clearer as we go for the larger design examples. Most of the time
was spent in the approximate forward traversal (which was done for both the Ezact
and Approzimate case).

The input environment for these design examples was assumed to be totally non-

deterministic. The “errors” reported here were all because of such an overly general

5.8. CONCLUSIONS 89

Table 5.6: Proving Pcilnterface invariants

Inv Exact Approximate

P | Nodes Time || P | Nodes Time
pl | 7 | >10 mil 7 || Y | 1,012,742 | 559.8
p2 || Y 1,116,686 | 2271.2 || Y | 1,007,843 | 661.6
p3 || ? | >10 mil ? Y | 1,324,916 | 750.9
pd || 7| >10 mil ? N | 2,060,485 | 1290.6
p5 || 7 | >10 mil ? N | 1,268,233 | 686.9
p6 || ? | >10 mil ? || N | 2,097,440 | 973.6
p7 || Y| 1,113,254 | 468.8 || Y | 1,007,408 | 420.1

environment model. In Chapter 7 we will see an extension to this work after we have

incorporated better environment models.

5.8 Conclusions

In this chapter, we have extended the idea of approximations using overlapping pro-
jections to symbolic backward reachability. We have combined it with a previous
method of computing approximate forward reachable state sets. We show that ap-
proximate forward and backward reachability can be used in tandem to obtain more
refined approximations. Overlapping projections are a viable approximation scheme
and have helped to prove a number of designer provided invariants in a large design,

where conventional exact approaches are rendered useless.

We have also proposed a new method to efficiently compute a sufficiently accurate
pre-image during symbolic backward propagation using overlapping projections. Our
method of domain splitting along with a number of associated optimizations has

proved effective in tackling real, large design examples.

90 CHAPTER 5. APPROXIMATE BACKWARD REACHABILITY

5.9 Appendix

5.9.1 Deterministic Relations

Recall from Section 2.3 that the underlying model for our applications is deterministic
Mealy machines. The transition relation for such deterministic systems has some
special properties that allows for distributing the pre-image over a conjunction. Before

we delve further, it will help to define when a relation is deterministic.

Definition 4 A relation T(x,y,x') over [x — B] x [y — B] x [x' = B] is single-
valued in (x,y) if for any assignment Xo,yo to X,y, there is a unique assignment X{
to x', such that (Xo,Yo0,%p) € T. Furthermore, the relation T(x,y,x') is total over
(x,y) if for any assignment Xo,yo to X,y, there is at least one assignment xg to X',
such that (xo,¥0,%y) € T. The relation T(x,y,x') is deterministic over (x,y) if it is

both single-valued and total over (x,y).

Since we are dealing with deterministic synchronous hardware, for a given evalu-
ation of the present state variables and the input bits, there is always a unique next
state. Hence, the transition relation, T'(x,y,x’) = /\;?21(3;; = n;(x,y)) in our Mealy
machine model, is single-valued over (x,y). The totality assumption is not very re-
strictive, because even if a design is not total it can be made so by including an extra

dummy state.

Pre-images sometimes distribute over conjunctions

Since we are dealing with implicit conjunctions in this thesis, a problem frequently
encountered is computing the pre-image of a set R, represented by an implicit conjunc-
tion, R = (Ry, ..., R,). Since computing the BDD for (R) through explicit conjunc-
tion is very likely to blow up, schemes which rely on building the BDD for y(R) and
then computing its pre-image are unacceptable. Instead, it would be nice if we could
compute the pre-images of the individual R;’s in R and then conjoin them. Unfor-

tunately, the pre-image of a relation does not distribute over conjunctions. However,

5.9. APPENDIX 91

under certain special conditions, the pre-image of an implicit conjunction (Ry, ..., Rp)
is the conjunction of the pre-images of the individual R}s. Theorem 6 formally states

the conditions.

Theorem 6 Given a deterministic relation T(x,y,x') over (x,y) and an implicit
conjunction of BDDs R = (Ry,...,R,), then

Jy,x' - [T(x,y,x) A Ry (x) ... A Ry(x')]

Jy - (3 - [T(x,y,x") AR (X')]) A
(@ - [T(x,7,%) A Ba(x)]) A

(ax' : [T(X, Y, xl) A R’P(x,)])]

Proof: The equivalence can be proved by proving implication in both directions. Proof
for LHS — RHS is trivial. We give here a proof for the other direction, RHS — LHS.

Let us consider a point xo € RHS. Hence there is some assignment yo to 'y and some

assignment x|, ...,x’ to the various instances of x' in the RHS, such that
1 P

((T(x07 Yo, x,1) A Rl (xi)) AN
(T (x0, Yo, X2) A Ra(x3)) A

(T (%0, Yo, %) A Bp(x3)))

is true. However since the relation T(x,y,x') is deterministic over (x,y); for a given
assignment (Xo,¥o) to (x,y), there can be one and only one assignment to x' that

makes T true. Hence x| = xy = ... =x;,. Hence the following must be true

(T (%0, Y0, ;) A Ry(%1) A Ry(x;) A ... A Ry(x)))

92 CHAPTER 5. APPROXIMATE BACKWARD REACHABILITY

This implies xo € LHS (with (yo,x}) serving as the witness), which completes the
proof.

5.9.2 Satisfiability Check with Multiple Constrain

After the BDD for a function is built, checking for satisfiability is easy. This is
because BDDs are canonical for a given variable ordering. However, when dealing
with implicit conjunctions of BDDs, the canoniéity property is lost. The same set of
states can be represented by more than one implicitly conjoined list of BDDs. This
makes the problem of checking for satisfiability of implicitly conjoined lists non-trivial.

Lemma 5 LetR = (Ry, ..., R,) be an implicitly conjoined list of BDDs, then y(R) =
0 iff Im(AP_, R;, Ry) = {0}.

Proof: The proof relies on the observation that y(R) = 0 implies that RiA (Al_ R;) =
0. This implies that the function R; evaluates to false on every state in the set N, R;.
In other words, the image of the function R; over the set Al_, R; can only be the
singleton set {0}. Note that the multiple constrain operator can be used to compute
this image without doing the explicit conjunction. In fact, the Lemma above can be
generalized to pick any element (and not just R;) of the tuple R = (Ry, ..., Rp) and
compute its image over the conjunction of the other elements of the tuple. Let R; be
an element of the tuple R, then ¥(R) = 0 iff Im(Af;_1ya) Bi» Bs) = {0}

Chapter 6
Auxiliary State Variables

The schemes discussed thus far in this thesis rely on doing approximate reachability
over overlapping subsets of the state variables. These schemes can be further improved
upon by augmenting the set of state variables with some auziliary state variables.
This chapter starts with the definition and intuition behind auxiliary state variables.
Thereafter, the technical challenges involved in creating auxiliary state variables is
elaborated upon. Finally, the results obtained by applying this method to different

design examples are presented.

6.1 Using Internal Abstractions

In this thesis, we have modeled synchronous digital designs with a Mealy machine
model, where the logic between register boundaries is flattened and a next state
function is assigned to each state holding element. Sometimes, wires hidden deep
inside the combinational logic carry a lot of useful information that can help capture
the communication and correlation between state machines. Unfortunately, there is
no state variable that explicitly captures the information embedded inside some of
these internal wires.

In order to exploit these internal abstractions hidden inside the combinational
logic, the design needs to be augmented with some special state variables that can

capture the information inside these wires, but which at the same time do not change

93

94 CHAPTER 6. AUXILIARY STATE VARIABLES

the externally visible behavior of the design. This is achieved through auxiliary state
variables. An auxiliary variable is an internal state component that is added to the

implementation without affecting the externally visible behavior.

6.1.1 Key Intuition

The key observation which makes auxiliary state variables useful in our applications
is that different state machines in a design often have a narrow communication in-
terface; in other words, the number of bits of information communicated between
state machines is usually small, even though the number of bits needed to encode
the state of these machines is relatively large. If there are no explicit state variables
that capture the information being communicated between these machines, there is
no option but to use the bits encoding the states of the two machines. And since the
communication width is often much less than the number of bits in the state of each
machine, this often leads to unnecessarily large subsets that can potentially suffer
from BDD blowup problems. The following example brings out this point.

6.1.2 Example to Illustrate Power of Auxiliary Variables

Consider the simple design shown in Figure 6.1. The design has 96 state variables,
denoted by (z1, . ..,%es). The Equality Detector checks whether the 32 bit state vector
of the two state machines (F'SM; and F'SM,) is identical, and then passes its output

to all the state machines. Exact reachability would require computing images over

the variables (z1,...,Z¢). Intermediate image BDDs with such large support sets
often blow up. Alternatively, we could choose to do approximate reachability over the
disjoint [12] subsets (Z1,...,Z32), (T3, .-, Tes) and (Ze4, ..., Tos). Since the subsets

have 32 variables, the intermediate image BDDs have 32 variables in their support
and are less likely to blow up. However, there is a price to the loss of accuracy, since
interaction between the variables in different subsets is lost. Using overlapping pro-
jections [29], we could capture some interaction by choosing the subsets (z1, ..., Ze4),
(233, - -,Tes) and (T1,...,Z32, Tes, -, Tgs). The intermediate image BDDs have 64

variables in their support, but it captures more interaction between the state variables

6.1. USING INTERNAL ABSTRACTIONS 95

Control
FSM
(x65,...,%x96

Equality hit

Detector

m———

Figure 6.1: Example to illustrate potential of using auxiliary variables

than the disjoint partition case.

However, the only interaction between state variables (zgs, . - - , Tgs) and the other
state variables happens through the signal hit. Hence, there is a single bit of in-
formation being communicated between the state machines. Unfortunately, there is
no single state variable that captures this bit of information hidden deep inside the
combinational logic. It appears wasteful to add 64 state variables, (2i,...,%e4), t0
other subsets in order to transmit one bit of information to other subsets. Instead,
we propose introducing an auxiliary state variable for the wire hit. Now interac-
tion between the state variables is captured by choosing the subsets (z1, .. ., 32, hit),
(233, - - . , Tga, hit), (Tgs, - - ., Tog, hit), and doing symbolic reachability [29] over them.
The largest subset in this case is size 33, but it captures the critical correlation be-
tween all 96 state variables in the design.

The benefit of looking for important internal conditions in the combinational
logic, representing narrow commaunication interfaces between state machines, and
converting them to auxiliary variables is now clear: an auxiliary variable captures
important properties of many state variables into a single new state bit. This can be

added to the other subsets to capture the correlation between many state variables,

96 CHAPTER 6. AUXILIARY STATE VARIABLES

even as the number of variables in different subsets is small.

6.1.3 Related Work

Augmenting a legal implementation with some extra state components in a way that
places no constraints on the behavior of the implementation is not an entirely new
idea. Abadi and Lamport [1] introduced a special class of auxiliary variables, history
and prophecy variables, to broaden the applicability of refinement mapping tech-
niques. We use auxiliary state variables [31] to broaden applicability of approximate
reachability techniques. Note that this contrasts to the idea of extracting functional
dependencies [40, 67] and removing extra state variables to simplify the model of the

underlying design.

6.2 Converting Internal Wires to Auxiliary State

Variable

Before we treat auxiliary variables as first class state variables, we need to assign a
next state function and an initial state to them. They can then be incorporated into

our Mealy machine model and then the algorithms from the preceding chapters can

easily be applied.

6.2.1 Next State Function for Auxiliary Variables

In order to illustrate how we assign a next state function to auxiliary variables, we
start with a typical design, as shown in Figure 6.2. It has a set of state holding
elements (x = (z),73,73) in Figure 6.2) and some combinational logic. Each state
variable has an associated next state function logic ((n,ng,n3) in Figure 6.2). Let a
be some internal wire in the design, and let a = g(x) be the function that determines
the value of a in time ¢ as a function of the state variables x at time .

If we let the subscript denote the time stamp, we have: a; = g(x;) and @z =

9(Xs41)- Using X441 = n(x¢, y:), we get agy1 = g(n(x¢,ye)), which is the required next

6.2. CONVERTING INTERNAL WIRES TO AUXILIARY STATE VARIABLEY7

State variables ’ State variables

next state function at timei t at time ':t+1'

cone for state var x

1

Combinational
X, Logic X,
N\ N\
g(X XX 5):
fanin cone
N, (X;,X,,X,) X X
Zrrens 2 for wire 'a’ 2
N\ PN
ng(x1:X2:X3) X3 X:3

next state function
cone for state var x

Figure 6.2: Typical design

98 CHAPTER 6. AUXILIARY STATE VARIABLES

state function for auxiliary state variable a.

This transformation is shown in Figure 6.3. For the example in Figure 6.1, let
g(z1,-..,%e4) be the Boolean function for the cone of logic feeding into the wire hit.
Furthermore, let (n, .. .,n64) be the next state functions for the usual state variables
(z1,...,%e4). The next state function for auxiliary state variable hit is obtained by
substituting n; for z; in g(z1,...,Ts4). This has the effect of retiming the internal
wire hit.

Note that we would not have been able to do the transformation above if g involved
some input variables in its support. If @ = g(x,y) (where y is the input bits) then
as41 = g(Xt41,¥e41) and we cannot represent the inputs in the next cycle, y¢yq, in
terms of x; and y;. This limitation can be circumvented by including the inputs as
part of the state. We never used the following for any of our results here, but if we
want to convert internal wires that also have‘inputs in their fanin cone into auxiliary
variables, the Mealy machine M = (x,y, gy, nn), can be transformed to another Mealy
machine M’ = (x',y’, ¢y, n’), where x’ = x Uy and the initial condition g is set to
qo. The y’ compohent is a set with a primed version for each variable in y. The next
state function for the x state variables remains the same, but for the y variables, their
next state function is the corresponding input variable from y’. Assuming a totally
unconstrained input environment, the machines M and M’ allow the same externally
visible behaviors and hence have the same set of reachable states (projected on to the

x variables). However, M’ allows more flexibility in choosing auxiliary state variables.

6.2.2 Initial Condition for Auxiliary Variables

The auxiliary state variables need to be initialized. Let a : (as,. .., @) be the list of
auxiliary variables and g : (g1, . .., g) be the list of Boolean functions (represented as
BDDs) such that g;(x) determines the value of a; at time ¢ in terms of state variables
x at time ¢. The initial condition for the a : (ay,. .., an) variables is obtained by the
following image computation, Im(g, g). In our applications, initial condition g is a
single state, and this reduces the image computation problem to computing g;(x) | go
for each auxiliary variable a;. (The | is the generalized cofactor [18] operator).

6.2. CONVERTING INTERNAL WIRES TO AUXILIARY STATE VARIABLE99

State variables State variables

next state function at timei t at time ':t+1’

cone for statevar x

Combinational
X, Logic X,
A N\
g(X | ,X 5 Xy):
fanin cone
n,(X,,X,,X X X
2(X4:X5:X5) 2 for wire 'a’ ?
A N\
ns(X1,X2,x3) X3 Xa
A PAN
Aucxiliary State
g(n,,n,ny) a Variable 'a’ ¢
A N\

next state function
cone for state var 'a’

Figure 6.3: Design including auxiliary state variables

100 CHAPTER 6. AUXILIARY STATE VARIABLES

6.3 Heuristics to Choose Auxiliary State Variables

The scheme for choosing which internal abstractions to convert to auxiliary state
variables is presently manual, and relies on being able to inspect the RTL source.
It helps to look at the RTL source, because designers often create internal abstrac-
tions themselves, while coding up their design using a hardware description language
(such as Verilog). Hence, we can leverage off this high level information directly by
inspecting the RTL description.

First, the FSMs are identified by inspecting the Verilog source. The next state
transition for every FSM was typically encoded as part of an always block in the
Verilog source. By inspecting the always block, it is possible to extract the internal
wires that affect the next state transition of each FSM. In turn, if those internal wires
depend only on state variables, they are chosen as auxiliary state variables.

However, the gate level descriptions of circuits like the ISCAS 89 benchmark
circuits, are devoid of any high level information. For such circuits, internal wires
which have a high fanin and high fanout, and are at the same time solely determined by
the state variables in the design (i.e., their fanin cones involve only state variables),
are identified. The intuition behind this heuristic is that such high fanin internal
wires carry some information about the large number of state variables in their fanin
cone. Furthermore, since they have high fanout, they transmit this information to a
large number of other state variables. Hence, including these wires as auxiliary state
variables in other subsets of w captures some correlation between the state variables
in the other subsets and the large number of state variables in the fanin cone of the

internal wire.

6.4 Experimental Results

The experimental implementation of the method was in LISP, calling David Long’s
BDD package (implemented in C) via the foreign function interface. The method
was evaluated on a collection of control circuits from the MAGIC chip, a custom

node controller in the Stanford FLASH multiprocessor [45]. For comparison with

6.4 EXPERIMENTAL RESULTS 101

earlier work, results obtained by applying the idea to the publicly available ISCAS89
benchmark circuits are also presented. The approximate algorithm returns a superset
of the reachable states, which is also an invariant of the design. To quantify the size
of the superset, the satisfying fraction of the the superset is computed (please refer
to the Appendix of this chapter in Section 6.6, for the algorithm that was used to
compute an upper bound on the satisfying fraction). Since projection induces an

over-approximation, the smaller the satisfying fraction, the stronger the invariant.

6.4.1 Results on Design Examples from FLASH

Table 6.1 gives a brief description of the sizes of various control modules extracted
from the I/O unit in terms of the number of state variables, auxiliary state variables
and input variables. (I0OQ_ReqD stands for the module obtained by combining the
submodules IOInboxQCtl and ReqDecode, whereas ReqS-RegD stands for the module
obtained by combining RegService and RegDecode).

Table 6.1: Control modules in I/O unit in FLASH

Module State | Auxiliary | Total | Input
IOQ_RegD | 60 6 66 25
ReqS_ReqD | 78 14 92 48
Pcilnterface | 88 20 108 55

Table 6.2: I0Q_ReqD: Size of approx. reachable set with auxiliary variables

Subsets Usual State Variables Adding Auxiliary Variables Ratio
Sat. Fr. | Time | Nodes || Sat. Fr. | Time | Nodes
wy 2.570e-08 | 22 | 63,180 || 1.485e-09 | 48 97,685 | 1.731e+01
Wy ” ” K 1.399¢-09 | 60 | 111,517 | 1.838e+01

The maximum number of BDD nodes (BDD Node Limit) for each experiment (.e.
for each row in the following tables) was preset. Initially, the collection of subsets,
w, has small-sized, possibly-overlapping subsets over the usual state variables alone.

These subsets incrementally become larger, until the experiment requires more BDD

102 CHAPTER 6. AUXILIARY STATE VARIABLES

Table 6.3: ReqS_RegD: Size of approx. reachable set with auxiliary variables

Subsets Usual State Variables Adding Auxiliary Variables || Ratio
Sat. Fr. | Time | Nodes || Sat. Fr. | Time | Nodes
w1 3.835e-09 | 553 | 644,667 || 2.632¢-09 | 1,302 | 846,476 | 1.457
Wo ” " " 2.282¢-09 | 1,232 | 1,832,354 || 1.680

nodes than set in the limit. To this collection of subsets giving the best result within
the node limit, extra auxiliary bits were added as per the heuristics given earlier
(Section 6.3). Thus, by staying within the bounds of the node limit, the strongest
invariant obtained with overlapping projections over usual state variables is compared
to the strongest invariant obtained with overlapping projections over the augmented
(usual and auxiliary) set of state variables. The column Subsets lists different choice
of the collection of subsets, w, where the size of subsets increases as we go down a

table. The same variable ordering was used for both the schemes.

The column labeled Nodes keeps track of the highest number of nodes that existed
at a time during the experiment. The Time column lists the cpu time (in seconds)
to complete the experiment on a MIPS R4300 with 768MB of memory (the cpu time
includes the time spent doing LISP garbage collection). The last column under the
heading Ratio is the ratio between the satisfying fraction obtained by using usual
state variables alone and the satisfying fraction obtained on adding auxiliary vari-
ables. Thus, larger figures in the Ratio column indicate better results with auxiliary
variables. Note the order of magnitude improvement reported in the 1OQ_ReqD

example.

Table 6.4: Pcilnterface: Size of approx. reachable set with auxiliary variables

Subsets Usual State Variables Adding Auxiliary Variables || Ratio
Sat. Fr. | Time | Nodes Sat. Fr. | Time | Nodes
W 1.801e-05 | 308 | 466441 | 5.892e-06 | 1,471 | 971,880 | 3.057
wy 2.175e-06 | 2,907 | 1,260,260 || 7.003e-07 | 9,174 | 8,349,050 || 3.105

6.4. EXPERIMENTAL RESULTS 103

6.4.2 Results on ISCAS-89 Benchmark Circuits

The algorithm was also evaluated on the bigger benchmarks in ISCAS 89 benchmark
suite. Once again, the partitions used by Cho et al. [12] were used to identify the FSMs
in the design. To these partitions, small overlaps were added to report the numbers
in Table 4.7 to show the potential of approximate reachability on overlapping subsets
of the usual state variables. Some auxiliary state variables are added to some of the
overlapping subsets, and results are compé,red with those in Table 4.7. Table 6.5 gives
a brief description of the sizes and number of auxiliary variables added to the various
benchmark circuits. Table 6.6 has the details on the improvement achieved by using
auxiliary state variables. The Iter column lists the number of iterations needed to
reach the fix-point.

The new algorithm was also tried on circuit s1423, but unfortunately we could not
improve upon the results reported in Table 4.7. (We suspect it is because 51423 has
a highly interconnected state transition graph (STG). Some high level insight into
the design, which ISCAS benchmark circuits lack, could better guide the choice of
auxiliary variables). However, for 513207, 515850 and 38584, an improvement by at

least an order of magnitude is reported.

Table 6.5: Auxiliary variables added to ISCAS 89 circuits

Circuit | State | Auxiliary | Total | Input
s13207 | 669 | 39 708 |31
s15850 | 597 | 14 611 |14
$38584 | 1452 | 12 1464 | 12

Table 6.6: ISCAS 89 circuits: Size of approximate reachable set with auxiliary vari-
ables

Circuit Usual State Variables Adding Auxiliary Variables Ratio
Sat. Fr. | Iter Nodes Sat. Fr. | Iter Nodes

s13207 || 1.14e-115 | 10+5 | 198,779 | 1.24e-117 | 1045 | 1,171,473 || 9.2e+-01

515850 || 3.94e-102 | 10+4 | 336,048 || 3.92e-103 | 10+4 | 339,031 | 1.0e+01

538584 || 5.76e-57 | 10+5 | 1,853,461 || 1.20e-58 | 10+4 | 1,952,730 | 4.8e+01

104 CHAPTER 6. AUXILIARY STATE VARIABLES

Given the large number of state variables in these circuits, and that the various
subsets have overlapping support, it is very difficult to compute the size of the ap-
proximate reachable set. The numbers in Table 6.6 under the Sat Fr column for
Augziliary Variables are upper bounds on the size of the reachable set. (Please refer
to the Appendix of this chapter in Section 6.6 for the algorithm used to compute
an upper bound on the size of the approximate reachable set). The true size of the
approximate reachable set using auxiliary state variables is much smaller than what
is reported here.

Note that the TMBM algorithm [12] was used for these benchmarks. TMBM
starts off as TFBF [12] and then switches to MBM [12] after a few iterations. The
Iter column in Table 6.6 lists the number of iterations of doing TFBF + the number
of iterations in the outer greatest fix-point of MBM.

6.5 Conclusions

The key observation that makes auxiliary variables a good idea for this application
is that the communication width or the number of bits of information communicated
between state machines is often much lower than the number of bits encoding the
states of these machines. Capturing the information in the interface between machines
through special state variables enables the capturing of communication between state
machines with smaller-sized subsets. The experiments show that a few appropriately
chosen internal conditions added as auxiliary variables can substantially improve the

quality of the over-approximation.

6.6 Appendix

6.6.1 Sat_Fr of Superset for FLASH I/O circuits

In Section 4.8, an algorithm to compute an upper bound on the satisfying fraction

of an implicit conjunction of BDDs was presented. With auxiliary state variables the

6.6. APPENDIX 105

problem needs to be slightly modified. Given a list of BDDs S : (Si,..-,5p), corre-
sponding to the collection of possibly overlapping subsets w : (wy, ..., wp), compute
sat_fr of v(S). The only difference now is that the individual w; subsets in w may
include auxiliary state variables, which can artificially lower the satisfying fraction,
and hence gives a distorted picture of the number of states in the superset. For the
design examples from the FLASH example, it was possible to remove the auxiliary
variables from S and accurately compute the satisfying fraction. The details of the
algorithm are given below.

Let a: (a,...,an) be the set of auxiliary state variables. Corresponding to each
auxiliary state variable a;, let g;(x) be the Boolean function (represented as a BDD)
which determines the value of the auxiliary state variable a; in time £ as a function
of the value of the usual state variables at time ¢. The algorithm defined below
substitutes the function g; for every instance of a; in the elements of the list S. At
this point, S has only the usual state variables in its support. Then the algorithm
explicitly computes (S) and finds its satisfying fraction.

for j=1 up to p by 1 do
for i=1up to mby 1do
Substitute g; for every instance of a; in S;
endfor
endfor
Compute final bdd = Ai_; S;
return sat_fr (final_bdd)

For the larger ISCAS 89 benchmark circuits, because of BDD size blowup prob-
lems, it was not feasible to remove all the auxiliary state variables and explicitly
compute final_bdd = ~(S). Hence, the conservative algorithm given in Section 4.8
was used and then normalized to compensate for the increase in the number of state
variables. (If m is the number of auxiliary state variables added, the result obtained
from the algorithm in Section 4.8 was multiplied by 2™ to obtain an upper bound on

the satisfying fraction for the reachable states over the usual state variables alone).

106 CHAPTER 6. AUXILIARY STATE VARIABLES

The Monte Carlo simulation technique, an alternative method to estimate the
satisfying fraction of y(S), appears to be ineffective because of the extreme sparseness
of the state space covered by (S). To get estimates with a good confidence interval,

a prohibitively large number of samples would be needed.

Chapter 7

Counterexamples

Ezample is always more efficacious than precept. — Samuel Johnson.

The verification algorithms presented thus far in this thesis are susceptible to false
negatives. Even though a property holds, the approximate algorithms may not be
able to prove it to be so. Searching for real counterexamples in such an approximate
space is liable to failure. In this chapter, the “hybridization effect” induced by our
approximation scheme is identified as the cause for the failure. A heuristic based on
Hamming Distance is proposed to improve the choice of projections that reduces the
hybridization effect and facilitates either a genuine counterexample or proof of the
property. Finally, the results obtained on a large real design example are presented.

7.1 Introduction

One of the key desirable features of model checkers is their ability to generate coun-
terexamples automatically, which can directly aid the debugging of the design. How-
ever, approximate model checking techniques have the drawback that it is not always
feasible to map a counterexample generated in the approximate space into a valid
counterexample in the real design. The approximated design may have extra degrees
of freedom, allowing certain transitions not possible in the real design. Analysis of

107

108 CHAPTER 7. COUNTEREXAMPLES

the cause of failure of the counterexample in the approximated space can highlight
what information is lost in the approximation process, and then hints can be given

that appropriately refine the approximation.

7.2 Related Work

Consider the following four-step general iterative approach to formal verification.
1. Initial approximation: Choose an initial approximation.

2. Verification: Try to verify the property. If the verification is successful, ter-

minate with success. Otherwise, go to step 3.

3. Failure Diagnosis: Analyze the failure report from the verification algorithm
and determine whether the failure is inherent in the original design or because
of the approximation. If the former is true, terminate with failure. If the latter

is true, go to step 4.

4. Refinement: Refine the approximation in a way that the reported bogus failure

is eliminated. Go back to step 2.

This general approach is applicable to any formal verification technique that allows
for conservative simplifications. The specific algorithm will depend on the technique,
heuristic choices of initial abstraction, failure report and refinement procedures.

As expected, this basic idea has been used by various researchers. Kurshan [44]
used it in the context of verification of timed automata, while Balarin et al. [3] used
it to check for language containment. Clarke et al. [16] explored this same basic
idea in verification using abstraction functions for different variables in a SMV pro-
gram. We explore the same basic idea in the context of approximation by overlapping

projections [29].

7.3. HYBRIDIZATION 109

Approximate Layered "Tube” at the end of function 'BackAndForth’

T2 T3
T1 RN
’ \
I’ ‘\
1
T0 ! error
1
1
. states
\ ,
s0 ‘ 1
U

s
U ’
4 '
" - s2 J \
h ~

initial .| st | @ AN
state \“.»-""""~ ‘ >.)

Figure 7.1: Counterexample generation from approximations

7.3 Hybridization

If the algorithm BackAndForth (Section 5.4) fails to rule out an error, it is useful to
check whether there is an actual error by generating an example path from g to a state
that does not satisfy g. This both confirms the existence of an error and provides
debugging information to the user. In Section 5.6, we saw a simple heuristic that
searches for a counterexample in the approximate space returned by the algorithm
BackAndForth.

Figure 7.1 is one way to visualize the idea behind the heuristic, where we try
making one step transitions from a state in the present layer to some state in the
next layer (details in Section 5.6). This simple heuristic is not guaranteed to succeed
and can get stuck in some bogus state s; in layer T;, which means that paths from
the initial states to these states in layer T} cannot be extended to form a complete
counterexample. It is useful to analyze what information is lost in the approximation
scheme that allows such bogus states to creep into the fube. Then hints can be

provided on how to improve the choice of projections and thereby create more accurate

110 CHAPTER 7. COUNTEREXAMPLES

(R1, R2) = alpha(R)

RN

gamma (R1, R2)

Dimension spanned by w2

Dimension spanned by wl

Figure 7.2: Hybridization effect induced by projections

tubes with fewer bogus states.

7.3.1 How do Bogus States Creep in?

In order to understand how bogus states creep into the approximation tube, we need to
understand the approximation induced by projections. The geometric interpretation
of the approximation induced is in Figure 7.2. For simplicity, assume there are only
two subsets in our collection of subsets (the ideas presented can be extended to an
arbitrary number of subsets). The irregular shape in Figure 7.2 represents the exact
set R, and the outer box represents the set of states obtained after projecting through
a, then concretizing through . This allows bogus states like s in Figure 7.2 to creep
into the approximation tube. For the given choice of subsets, there is some loss of
correlation between the state variables in different subsets. In particular, bogus states

like s do not have to agree with some real state in R across all the w; and ws bits, but

7.3. HYBRIDIZATION 111

instead merely need to agree with some real states in R on w, bits, and with some

other real states in R on ws bits. This leads to the notion of hybridization.

Definition 5 Let s, and s; be two states from [x — B]. Given a collection of
subsets w = (w1, ws), the states s and sy are said to hybridize a state s, ie,
s € hybrid(s,, s3) if the following conditions hold:

e s# 5 and s # sq, and
o o;(s) = ai(s1), and
o ay(s) = a2(s2)

In other words, s € hybrid(s;,s;) holds relative to the choice of subsets w =
(wy,ws) if s agrees with s; on the w; bits and s agrees with s, on the wy bits. From
Figure 7.2, note that every state from P, would hybridize with every state from P

to allow bogus state s to creep in.

Example 6 Let s; and sz be two states from Py and P, respectively. Since s1, S2
and s are single states, they have a unique assignment to all the state variables in .
For ease of ezposition, consider a design with siz state variables = {a,b,c,d,e, f},
R=0bVe, w, = {a,bc,d} and w, = {c,d,e, f}. Let the bit vectors s = 101101,
s = 101111 and sy = 111101 represent these single states (the leftmost bit in the
vector refers to variable ‘a’ and the rightmost refers to variable ’f ’). Note that s; € R,
s € R, but s & R as required from Figure 7.2. Also s and s, differ in the assignment

to variable e, whereas s and sy differ in the assignment to variable b.

7.3.2 Intuition to Removing Bogus States

The key idea is that by looking at the bits that disagree in s and s; (s2), and adding
them to the w; (wz) subset, the bogus state s can be eliminated from the approxima-
tion. Consider adding to w; the bit positions where s; and s differ, .., w] = w;U{e}.
The new w) = w, U {b} is formed analogously by adding w; to the bit variables on

which s, and s differ. Relative to this new choice of subsets w' = (w],w5), the bogus

112 CHAPTER 7. COUNTEREXAMPLES

N
gamma (R1, R2)
gamma (R1’ ,R2')

w2 Dimension

R2

]

(R1,R2) alpha (R)

(R1’ ,R2") alpha’ (R)

wl Dimension

Figure 7.3: Refinement through Hamming distance heuristic

state s is no longer a hybrid state. This is because the possible states that could hy-
bridize to give place to the state s, namely P| and Pj, are both reduced to 0. (Relative
to this new choice of subsets, P! = o/ (s) A R reduces to 0. Similarly Py = a5(s) A R
also reduces to 0.)

The geometric interpretation of the refinement induced by this heuristic is in Fig-
ure 7.3. Relative to the earlier choice of subsets w = (w;,w,), we use the pair of
functions (o, v) and the set R can be approximated by the tuple (R;, Rp). However,
this includes the bogus state s since s € y(Ry, Rz). With the new choice of subsets
w' = (w}, wh), we use the associated pair of functions (o/,7’) and the set R is approx-
imated by the tuple (R}, R,). However, this does not allow the bogus state s to creep
in, since s & v'(R}, R}). Also note that v'(R}, R}) C ¥(Ry, Ry), implying that results
from the choice of subsets w' = (w}, w}) are guaranteed to be tighter approximations
than those obtained with w = (w1, ws).

However, as the approximations get refined, the size of the individual subsets in
w' grows. Larger subsets yield more accurate results; however, they are more likely
to suffer from BDD size blowup during the fix-point routines in BackAndForth. To

ensure that the sizes of the individual subsets grow incrementally, it is advisable

7.4. HAMMING DISTANCE HEURISTIC 113

to choose states s;, so from P andP,, respectively, such that they have the smallest
Hamming distance [36] from s.! This will incrementally lead to one or more iterations
of augmenting the subsets that will rule out the bogus state s. Formally, the algorithm

for improving the choice of subsets is:

function ImproveProj ((Pi,P»),s, (w1, wz))
Choose s, € P, s.t. |si—s| issmall
Choose sy € Py s.t. |sy—s| is small
wl =w, U bits where (s,s1) differ
wh = wy U bits where (s,s2) differ

return v’ = (v}, wj)

Choosing the states s; and s, in the algorithm above requires finding a state from a
set of states that has minimum Hamming distance from some other reference state.
An efficient algorithm proposed by Yang [68, 69] was used here. The complexity of
that algorithm is linear in the size of the BDD representing the set. In the general
case of more than two subsets in the collection, w = (wy,...,wp), the subset w; is

improved relative to the next subset in the collection, i.e. W(i+1) mod p-

7.4 Hamming Distance Heuristic

It is useful to distinguish between two different kinds of bogus states. Suppose the
counterexample generation method is stuck at a state s in some layer (Ri, Rp). De-
pending on whether or not the approximate image of s intersects with the next layer,

there are two possible scenarios:

e Case 1: Hybridization in present layer
In other words, even the approximate image of s does not intersect with the next
layer. Figure 7.4 is one way to visualize the problem. State s does not belong to

1The Hamming Distance between two states p and g, denoted by | p—¢ |, is defined as the number
of bit positions where p and ¢ differ.

114 CHAPTER 7. COUNTEREXAMPLES

Present Layer

R1
oy Next Layer
s1
A
exact
T preimage
P21 R2 S2
s0 Tt
o-

A

. 'a'b'proximate image of ’s’

E does not intersect the
P1 E next layer

——— e ==

states in (P1,P2) hybridize to allow ’s’ inside the tube

Figure 7.4: Case 1: Hamming distance heuristic to remove bogus states

7.4. HAMMING DISTANCE HEURISTIC 115

Present Layer Next Layer
R1 S1

e -

e R2 S2

[

approximate image

of ’s’ intersects

next layer

states in (P1,P2) hybridize to allow ’'q’ inside the tube

Figure 7.5: Case 2: Hamming distance heuristic to remove bogus states

the exact pre-image of the next layer (or a one step transition would have been

possible), but it is included because of the approximation of the pre-image.

Let P, represent the set of states in the exact pre-image of y(Si, S) that agree
with s on the w; bits and P, represent the set of states in the exact pre-image
of v(S1, S2) that agree with s on the wo bits. Note that every state in P; will
hybridize with every state in P, to give the state s. The algorithm ImproveProj
is invoked with the arguments ((Py, P,), s, (w1, w2)) to obtain an improved choice

of projections.

Case 2: Hybridization in nest layer
The approximate image of s intersects with the next layer. Figure 7.5 is one

way to visualize the problem.

Let g be a state in y(Imgy(s,n) M (S1,S2)). Furthermore, let P, be the set of
states in exact image of s that agree with ¢ on w; bits, and let P, be the set of

states in exact image of s that agree with ¢ on w, bits. Every state in P will

116 CHAPTER 7. COUNTEREXAMPLES

hybridize with every state in P, to produce the bogus state g. As in the previous
case, the algorithm ImproveProjis invoked with arguments ((Py, P%), ¢, (w1, w2))

to obtain an improved choice of projections.

7.4.1 Computation of P, and P,

e In Case 1, P, and P, can be computed 'without computing the exact pre-
image Pre(y(S), n). To compute P;, all the next state functions are constrained
with «;(s), and then passed to the Prey. algorithm (which was described in
Section 5.3). The other arguments passed to the algorithm Prey. are S, I,
x — w;. (where S = (Si,S2) represents the next layer and I represents the
states generated by previous approximate forward reachability pass). In the
cases where the set {x —w, } is too big and induces many recursive subproblems
in Pregy, algorithm (see Section 5.3), the recursive algorithm stops as soon as it
finds some state in P;, and in essence computes an under-approximation of P;.
This entails a possible augmentation of the subsets with a few more bits than
the optimal minimum, but our experiments show that this is not a problem.
The Hamming Distance causes size increments in the 1-17 range and is well-
behaved to ensure that the collection of subsets becomes incrementally coarser.

(Analogously P, can be computed too).

e In Case 2, computing P, and P; is easy. Since s is a single state, computing the
exact image, I'm(s,n) is not a problem. P, can then be computed by explicitly
computing @, (g) A Im(s,n). (Analogously P, can be computed too).

7.4.2 Features of the Hamming Distance Heuristic

1. Since the choice of subsets involves augmenting the various subsets, each pass
results in a coarser collection of subsets. This guarantees that the results ob-
tained in the next pass with the new choice of subsets are tighter approximations

than the results obtained in the earlier pass.

2. Even though more than one correction of the choice of subsets may be required,

7.5. EXPERIMENTAL RESULTS 117

it automatically leads to a choice of subsets where transitions can be made from
one layer to the next in the approximate tube in one step. Since the layers in the
tube are approximations and represent lower bounds on the distance between
the initial states and the error states, this finally results in the shortest possible

counterezample.

3. The method starts with a collection of very small subsets as an initial guess.
Thereafter, it automatically finds where the information is getting lost, and
iteratively improves the collection of subsets. In contrast to structural meth-
ods [11] of choosing the collection of subsets, this is an automatic method of

choosing subsets relative to a property that needs to be proven.

7.5 Experimental Results

The method was evaluated on the PCI Interface section of the I/O unit from the
MAGIC chip, a custom node controller in the Stanford FLASH multiprocessor [45].
Earlier efforts [30] to verify this resulted in many invalid counterexamples because of
lack of environment models to model the legal inputs from the PCI bus.

Recently Shimizu et al. [62] released a formal specification of the PCI Bus pro-
tocol. The monitor-style specification of the protocol by Shimizu et al. [62] enabled
connecting the I/O section of the MAGIC chip to the monitors (see Figure 7.6). The
monitors snoop the transactions on the PCI bus and generate signals ocorrect;, for
1 < i < 66, to ensure that only legal inputs from the PCI bus go into the I/0O unit.
At the same time, the monitors snoop the output signals from the I /O unit to ensure
that the outputs obey the PCI bus protocol. These output checking signals form the
signals mcorrect;, for 1 < i < 66, as in Figure 7.6.

The inputs are constrained to keep all the ocorrects high. While doing so, if some
meorrect; goes to 0, then the PCI unit has violated the PCI specification. Thus, under
the assumption of ocorrects being true at all times, the tool checks if the validity of
the mcorrects can be guaranteed. An example of a property from the mcorrects is
that irdy cannot be asserted by the I/O unit in a cycle if the bus was idle in the

118 CHAPTER 7. COUNTEREXAMPLES

I/O Unit from the PCl Bus
1

MAGIC chip in the
FLASH Design

ocorrects

- Monitors

mcorrects

Figure 7.6: PCI design example

7.5. EXPERIMENTAL RESULTS 119

previous cycle.

7.5.1 Proving Safety Properties on PCI Interface Unit

The design size of the resulting verification example was 429 state variables and 85
inputs. This verification design example [57], along with the 66 safety properties
generated by Shimizu et al [62], will soon be publicly available [57].

The initial choice of subsets was based on the heuristic reported in Section 4.5.
Since the high level design description (in Verilog) was available, it was possible to
identify the various finite state machines by inspection. State variables that encode
the state of the same state machine were kept in a single subset. Thereafter, the
Hamming distance heuristic improved the choice of subsets. Eventually, the method
completed the proof of 64 properties. The remaining two properties could not be
proved (nor could counterexamples be generated for them).

The details are in Table 7.1. The column labeled #Proj refers to the number
of subsets. As the size of the individual subsets becomes larger with the Hamming
Distance heuristic, some subsets totally subsume other smaller subsets. The totally
subsumed subsets are then removed from the collection, which is why the numbers in
the column decrease. The column labeled Awvg. gives the average size of the subsets,
and Maz. teports the size of the biggest subset. The average is a macro level measure
of the cost incurred as the subsets become larger, whereas the size of the biggest
subset is an indicator of the size of the support set of the potentially biggest BDD
in the fix-point routine. (There is a reason why #Proj X Avg. < 429 (the number
of state variables). The 66 ocorrects are not included in any of the subsets in w, and
instead used as constraints. Further each of the 66 mcorrects are included in single
sized subsets, which are not counted for the numbers in the #Proj column.)

The Size of Tube (measured in terms of satisfying fraction of the total state space)
is an upper bound on the number of states in the final tube inside which all counterex-
amples must lie. As the subsets become coarser, the size of the tube becomes smaller,
as expected. The column labeled Nodes reports the peak number of BDD nodes alive

during the experiment, and Time reports the time in seconds. The column Proved

120 CHAPTER 7. COUNTEREXAMPLES

reports the number of mcorrects proved after that experiment, and HD Range gives
data on the size increase of some subsets during the experiment. Note that the size
of the subsets grew marginally (by 17 bits in the largest case) compared to the size
of the final model (which had 429 state variables), even as it enabled the proof of 64
out of 66 properties. It is also interesting that the final choice of projections was able

to catch a crucial correlation that enabled a faster time to fix-point.

Table 7.1: Proving safety properties on PCI interface unit

Tter || # Proj | Avg. | Max || Size of Tube | Nodes | Time || Proved | HD Range
1 65 | 5.06 10 || 3.646131e-22 | 208842 | 2843 || 11/66 -
2 53 | 6.35 15 || 3.207865e-27 | 307152 | 3931 | 11/66 1-8
3 42 | 8.76 20 || 9.166265e-30 | 437237 | 6496 12/66 4-15
4 41 { 9.16 29 | 2.796728e-55 | 198830 | 1343 | 61/66 7-17
5 41 | 9.17 29 || 8.739775e-57 | 128488 | 977 | 64/66 1-5
6 41 | 9.32 29 || 2.184944e-57 | 126222 | 979 || 64/66 1-3

Counterexample generation

The complete FLASH I/O unit is a very large design with nearly 2400 state vari-
ables. To ease the task of verification, initially only the core control portion of the
I/O unit was included in the model. Proof of many of the mcorrects initially failed
and counterexamples for the failed properties were generated. The Hamming Dis-
tance heuristic helped in the generation of such counterexamples. Since our search
method generates the shortest counterexample, the Hamming Distance heuristic au-
tomatically improves the choice of subsets until the number of layers in the tube
matches the number of transitions needed to reach the error states. For example,
as the choice of subsets improved, the number of layers in the approximation tube
increased from 3 to 6 before a valid counterexample (relative to the model) to one of
the mcorrects was generated.

The designer would inspect the counterexample, and indicate which part of the
I/0 unit needed to be added to the model to rule out the counterexample. Typically,
this occurs because in the process of cutting out parts of the I/O unit, many internal

7.5. EXPERIMENTAL RESULTS 121

signals are modeled as non-deterministic inputs in the model. Relevant logic from the
I/O unit that drives such signals was added to the model and the verification exercise
was repeated. This process of incrementally adding more parts of the I/0O unit to the
model, as and when it became necessary, resulted in the final model having 429 state
variables and 85 inputs. In our experience, the Hamming Distance heuristic is helpful
in not only improving the choice of subsets to enable proof of a property, but also in
generating actual counterexamples (relative to the model) and by giving information
on which other parts of the I/O unit need to be added to the model.

Example of hints provided by the heuristic

The monitor style specification of the PCI bus required that the monitors themselves
maintain some internal state depending on the past transactions on the PCI bus. Even
the I/O unit of the MAGIC chip has its own internal state depending on the transac-
tions occurring in the PCI bus. The initial choice of subsets left the correspondingly
equivalent internal state variables in different subsets. Many of the properties were
not provable because of the hybridization effect induced by these equivalent internal
state variables not being correlated at all times. The Hamming distance heuristic was
able to automatically bring this out, and enabled the proof of many properties.

We conjecture that most or all of the PCI monitor’s state is functionally dependent
on the state inside the I/O unit implementation. The intuition is that any book-
keeping that the monitors do to ensure the protocol is not violated, must also be
done by the I/O implementation to ensure that it obeys the PCI protocol. This is an

interesting avenue for future research.

7.5.2 Proving Global Safety Properties on FLASH 1/0

The algorithm has also been used to prove some more global properties over FLASH
1/0. The whole of FLASH I/O has nearly 2400 state variables. Using the lossless cone-
of-influence reduction, the part of the design relevant to the property was extracted.
The results are in Table 7.2. Inv lists the property being proved. The column under

State indicates the number of state variables captured after the cone of influence

122 CHAPTER 7. COUNTEREXAMPLES

reduction. P indicates whether the safety property was proved (indicated by Y') or
not (indicated by N). Depth gives the length of the shortest counterexample generated
at the end for the cases where the proof failed. The column labeled Nodes indicates the
peak number of BDD nodes (in millions) during the verification of the property. Iter
lists the number of iterations of improving the choice of subsets using the Hamming
Distance heuristic, before the property was proved or disproved. Finally, Time gives

the time in seconds for the complete verification exercise.

Table 7.2: Proving global properties on FLASH I/0

Inv State | P | Depth | Nodes | Iter | Time
AG(pl) 1425 |Y - 11.59 | 2 | 13152
AG(p2) | 233 N 4 4.86 3 | 11226
AG(p3) (233 | N 4 5.28 3 9114
AG(p4) [196 | N 7 1.67 3 8083
AG(p5) | 196 | N 18 1.03 2 5770
AG(p6) 425 |Y - 13.96 | 1 |12745
AG(p7) | 196 |Y - 1.22 1 1772
AG(p8) | 196 |Y - 1.09 1 1616

The bug exposed by the counterexamples for properties AG(p2) and AG(p3) was
later fixed by the designer. It was further proved that the corrected design thereafter
indeed satisfied the property (rows for AG(p7) and AG(p8) show results obtained
on the corrected design for those properties). (The counterexamples for AG(p4) and
AG(p5) were negated by the designer, because they violated some assumptions on
the environment under which the design was to operate).

Note that the Time column reports the cumulative time spent for the various
choice of subsets. This explains why results for properties like AG(p2) which have
fewer state variables, still need more time. Since property p2 involves 3 iterations
of the Hamming Distance heuristic, it means running the algorithm BackAndForth
for 3 different choices of subsets. Even though there is a time penalty with repeated
traversals over different choices of subsets, the Hamming Distance heuristic has in-
trinsic value since it is an automatic way of improving the choice of subsets to enable

proof of a property.

7.6. CONCLUSIONS 123

7.6 Conclusions

The appeal of the ideas in this chapter is the automatic failure analysis and automatic
modification of the subsets to address the failure.

Even though the robustness of the heuristic is evident from the experimental
results, there are some avenues for further improvement. Some backtracking could
be employed to look for other candidate states in a given layer. This would offset the
randomness associated in the present selection of a single state from the exact image
to move to the next layer.

Instead of immediately looking for ways to improve the choice of subsets, effort
can be put into a more exhaustive search for counterexamples in the current approx-
imation tube. In particular, methods of computing under-approximations of images
and pre-images with overlapping projections as the underlying approximation scheme

would greatly facilitate this and would fit very well in the overall verification method-

ology.

124 CHAPTER 7. COUNTEREXAMPLES

Chapter 8
Conclusions

Today’s digital systems are designed by a team of designers. Each individual de-
signer has a very detailed understanding of the working of his or her unit and the way
it interfaces with other units in the system. The designer’s understanding of the other
parts of the design is relatively at a much higher level of abstraction. Understanding
a design é,t various levels of abstraction is perhaps the only way a human mind can
deal with the tremendous complexity of today’s designs. For instance, even though a
designer does not have a clear knowledge of the complete state space of the system,
he or she may be confident about certain local properties relevant to his or her unit.

It is exactly the same phenomena that makes approximate methods of verification
useful. While trying to prove required properties of a design, it helps to look at an
abstraction of the design where only the details relevant to the property being checked
are included. This helps the verification tool to better manage the complexity of
today’s designs. |

The key idea of this thesis is using a new approximation scheme called overlap-
ping projections. Sets of states are represented by an implicit conjunction of small
BDDs. The individual BDDs are kept small by restricting their support sets. The
scheme allows for using high level information about the circuit structure to guide the
approximation. As a result, the scheme is robust enough to handle today’s large de-
signs and at the same time retains sufficient information to enable proving correctness

properties. The approximation scheme results in tighter approximations compared to

125

126 CHAPTER 8. CONCLUSIONS

earlier schemes based on disjoint partitions. Overlapping projections allow us to hit
intermediate points in the gquality of approzimation vs memory space tradeoff curve,

with disjoint partitions on one extreme and exact reachability on the other.

8.1 Key Technical Contributions

In order to make “overlapping projections” a viable approximation scheme, the key

technical challenges addressed in this thesis are:

e An efficient multiple constrain method for BDDs, that enables us to compute ef-
ficiently the image of an implicit conjunction of BDDs with possibly overlapping

support, using Boolean function vectors.

e An efficient method based on domain splitting along with a number of asso-
ciated optimizations to compute projections of exact pre-image of an implicit

conjunction of BDDs.

e Extracting hidden internal abstractions from the combinational logic, and con-
verting them to auziliary variables, which help further improve the quality of

approximation.

e Generating counterexamples from the approximations, and automatically refin-
ing the approximation in the cases where the tool is unable to give a yes/no

answer.

8.2 Key Results

The ideas in this thesis have been evaluated on publicly available benchmark circuits
from the ISCAS-89 benchmark suite. Our experiments show orders of magnitude
improvement in the quality of results obtained when compared with earlier schemes
of approximation. The ideas have also been evaluated on a very large realistic design
example from the Stanford FLASH Multiprocessor. In particular, the I/O unit of the
MAGIC chip in the FLASH Multiprocessor was extensively verified.

8.3. POSSIBLE FUTURE WORK 127

Using overlapping projections as the underlying approximation scheme has en-
abled us to push the limits on the sizes of designs that can be automatically handled

by model checking techniques.

8.3 Possible Future Work

Like any thesis, although some answers are provided, many more questions are raised.
Even as there is some progress in automatically verifying digital systems, there is still
a long way to go before any design is automatically verified. In this section, we

suggest some ways in which this work can be further extended.

8.3.1 Better Under-approximations

The weakest link in the present flow is generating counterexamples. The present
heuristic for generating counterexamples can be viewed as a naive under-approximation
of the reachable state space. When this simple heuristic fails, instead of immediately
looking for ways to improve the choice of subsets, more effort can be put on a more
exhaustive search for counterexamples in the current approximation tube.

A more general problem is looking for efficient methods to generate better under-
approximations of the reachable state space. Throughout this thesis, we have used
the high level information on the circuit structure to generate over-approximations
(or supersets) of sets of states. To complement this, similar schemes for generating
under-approximations (or subsets) of the reachable state space would greatly add to
the value of the tool. Existing schemes in the literature for under-approximations do
not take into account any high level information about the circuit structure and are

hence not very effective for our purposes.

8.3.2 Combining with Other Abstractions

The EDA (Electronic Design Automation) industry today is slowly embracing model
checking as a viable commercial product. With the rapid commercialization of model

checkers, many of the enhancements and optimizations are often kept secret, making

128 CHAPTER 8. CONCLUSIONS

it hard to do a comprehensive comparative analysis. For example, Cadence Design
Systems [9] has a model checking product called FormalCheck [10], which has other
automatic abstractions (like localization reduction) about which little information is
publicly available. Even among the research community there has been a lot of interest
in abstractions and approximation based methods in the context of model checking.
Any model checker could benefit a lot by incorporating all of these techniques into a
unified framework. Such a framework, with the high level controls left to the user,
would be very empowering, since different techniques work best for different kinds of
designs and the user can choose which technique to try depending on the underlying

design.

8.3.3 Extension to Liveness Properties

The scope of this thesis is limited to safety properties, where the idea is to check
that nothing bad happens in any reachable state. For such properties, any falsify-
ing counterexample is always of finite length. Geometrically, a counterexample here
represents a path from the initial states to the error states in the state graph. On
the other hand, liveness properties check that something good eventually happens.
For such properties, any falsifying counterexample has infinite length. Geometrically,
a counterexample in this case represents a path from the initial states to a strongly
connected component in the state graph where each state in the strongly connected
component fails to satisfy the eventuality property required.

In order to check for falsifying counterexamples for liveness properties, we need
symbolic under-approximate traversal techniques that can look for strongly connected
components. The conservative over-approximations paradigm of this thesis is not

amenable for checking liveness properties.

8.4 Discussion

The power of formal methods, like model checking, is that they can cover all possible

outcomes and hence give absolute guarantees of correctness. But that same power

8.4. DISCUSSION 129

is also its limitation. The number of possible outcomes is astronomically large for
today’s large designs, and formal methods do not scale well to deal with such large
problem sizes. Therefore, the key for formal methods is to find appropriate approx-
imate methods that can absorb the complexity of today’s large designs and at the
same time yield useful results. Overlapping projections appears to be an effective
approximation scheme to help meet this challenge.

Formal verification with in-built approximation techniques appears to be a very
fruitful and promising area for further research. Given the rapid increase in the
complexity of today’s designs, the traditional simulation based empirical approach of
validation will have to be necesarily augmented with approximate formal methods.
Given the pressures of early-time-to-market and the reluctance of designers to educate
themselves on latest formal verification methods, it is imperative that formal verifi-
cation tools be automated and easy to use. Thus, efficient approximate methods that
automatically refine themselves in the cases where the approximation loses a lot of
information, will be the key to ensure that the EDA (Electronic Design Automation)
industry adopts them.

Even as this thesis helps further the process of verifying large hardware designs,
there is room for improvement and a long way to go before any design is automatically

verified.

130 CHAPTER 8. CONCLUSIONS

Bibliography

[1]

2]

[3]

[4]

[8]

Abadi, M. and Lamport, L., “The existence of refinement mappings,” Logic in
Computer Science (LICS), pp. 165-177, July 1988.

Akers, S. B., “Binary decision diagrams,” IEEE Transactions on Computers, vol.
C-27, no. 6, pp. 509-516, August 1978.

Balarin, F. and Sangiovanni-Vincentelli, A. L., “An iterative approach to lan-
guage containment,” Proceedings of Computer Aided Verification (CAV), pp.
29-40, 1993.

Bergmann, J. P. and Horowitz, M. A., “Vex - a CAD toolbox,” Proceedings of
the Design Automation Conference (DAC), pp. 523-528, 1999.

Brayton, R. et al., “VIS: A system for verification and synthesis,” Proceedings
of Computer Aided Verification (CAV), pp. 428-432, 1996.

Bryant, R. E., “Symbolic Boolean manipulation with ordered binary-decision
diagrams,” ACM Computing Surveys, vol. 24, no. 3, pp. 293-318, September
1992.

Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D, L, and Hwang, L. J.,
“Symbolic model checking: 10% states and beyond,” Logic in Computer Science
(LICS), pp. 428-439, 1990.

Cabodi, G., Camurati, P., and Quer, S., “Symbolic exploration of large circuits
with enhanced forward/backward traversals,” Proceedings of the European De-
sign Automation Conference (EURO-DAC) 1994, pp. 22-27, 1994.

131

132

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

BIBLIOGRAPHY

Cadence Design Systems, http://www.cadence.com.

Cadence Design Systems, EDA Solutions Product for Functional/Logic Verifica-
tion, http://www.cadence.com/datasheets/formalcheck.html.

Cho, H., Hachtel, G., Macii, E., Poncino, M., and Somenzi, F., “Automatic
state space decomposition for approximate FSM traversal based on circuit anal-
ysis,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 15, No. 12, pp. 1451-1464, December 1996.

Cho, H., Hachtel, G., Macii, E., Pleisser, B., and Somenzi, F., “Algorithms for
approximate FSM traversal based on state space decomposition,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 15,
No. 12, pp. 1465-1478, December 1996.

Clarke, E. M., Emerson, E. A. and Sistla, A. P., “Automatic verification of finite-
state concurrent systems using temporal logic specifications,” Proceedings of 10
Annual ACM Symposium on Principles of Programming Languages, Jan. 1983.

Clarke, E. M., Grumberg, O., and Long, D., “Model checking and abstrac-
tion,” Proceedings of ACM Symposium on Principles of Programming Languages,

pp. 343-354, 1992.

Clarke, E., Grumberg, O., and Peled, D., “Model checking,” The MIT Press,
1999.

Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H., “Counterexample-
guided abstraction refinement,” Proceedings of the Computer Aided Verification
(CAV), pp. 154-169, July 2000.

Cohn, A., “The notion of proof in hardware verification,” Journal of Automated
Reasoning, vol. 5, no. 2, pp. 127-139, 1989.

Coudert, O., and Madre, J. C., “A unified framework for the formal verification of
sequential circuits,” Proceedings of IEEE International Conference on Computer
Aided Design (ICCAD), pp. 126-129, 1990.

BIBLIOGRAPHY 133

[19] Cousot, P., and Cousot, R., “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints,” In
4t ACM Symposium Principles of Programming Languages, pp. 238-252. ACM
Press, 1977.

[20] Dams, D., “Abstract interpretation and partition refinement for model checking,”
PhD thesis, Technical University of Eindhoven, 1991.

[21] DeMicheli, G., “Synthesis and optimization of digital circuits,” McGraw-Hill,
New York, 1994.

[22] Dill, D. L., and Wong-Toi, H., “Verification of real-time systems by successive
over and under approximation,” Proceedings of Computer Aided Verification
(CAV), pp. 409-422, 1995.

[23] Eijk, C. A. J., “Formal methods for the verification of digital circuits,” PhD
thesis, Eindhoven University of Technology, 1997.

[24] Eiriksson, A., “The formal design of 1M-gate ASICs,” Proceedings of Formal
Methods in Computer-Aided Design (FMCAD), pp. 49-63, 1998.

[25] Fallah, F., Devadas, S., and Kuetzer, K., “OCCOM: Efficient computation of
observability-based code coverage metrics for functional evaluation,” Proceedings
of Design Automation Conference (DAC), pp. 152-157, 1998.

[26] Filkorn, T, “Functional extension of symbolic model checking,” Proceedings of
Computer Aided Verification (CAV), pp. 225-232, 1991.

[27] Fujita, M., Fujisawa, H., and Kawato, N., “FEvaluations and improvements of a
Boolean comparison program based on binary decision diagrams,” Proceedings
of IEEE International Conference on Computer Aided Design (ICCAD), pp. 2-5,
1988.

[28] Geist, D., and Beer, L., “Efficient model checking by automated ordering of tran-
sition relation partitions,” Proceedings of Computer Aided Verification (CAV),
pp- 299-310, 1994. ‘

134

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

BIBLIOGRAPHY

Govindaraju, G. S., Dill, D. L., Hu, A. J, and Horowitz, M. A., “Approximate
reachability with BDDs using overlapping projections,” Proceedings of the De-
sign Automation Conference (DAC), pp. 451-456, 1998.

Govindaraju, G. S. and Dill, D. L., “Verification by approximate forward and
backward reachability,” Proceedings of IEEE International Conference on Com-
puter Aided Design (ICCAD), pp. 366-370, 1998.

Govindaraju, G. S., Dill, D. L. and Bergmann, J. P., “Improved approximate
reachability using auxiliary state variables,” Proceedings of Design Automation
Conference (DAC), pp. 312-316, 1999.

Govindaraju, G. S. and Dill, D. L., “Approximate symbolic model checking us-
ing overlapping projections,” Proceedings of First International Workshop on
Symbolic Model Checking (SMC99) at Federated Logic Conference (FLOC), pp.
23-33, 1999.

Govindaraju, G. S. and Dill, D. L., “Counterexample-guided choice of projections
in approximate symbolic model checking,” Proceedings of IEEE International
Conference on Computer Aided Design (ICCAD), (accepted for publication),
November 2000.

Govindaraju, G. S. and Dill, D. L., “Approximate symbolic model checking us-
ing overlapping projections,” IEEE Transactions on Computer-Aided design of
Integrated Circuits and Systems (T-CAD), (under review).

Gupta, A., “Formal hardware verification methods: A survey,” Formal Methods
in System Design, vol. 1, no. 4, pp. 335-383, December 1992.

Hamming, R. W., “Error detecting and correcting codes,” Bell Systems Technical
Journal, vol. 9, pp. 147-160, April 1950.

Hof, D. R., “Intel takes a bullet - and barely breaks stride,” Business Week, pp.
38-39, January 1995.

BIBLIOGRAPHY 135

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Hu, A. J, Dill, D. L., Drexler, A. J., and Yang, C. H., “Higher-Level speci-
fication and verification with BDDs,” In Computer Aided Verification (CAV):
Fourth International Workshop, Springer-Verlag, July 1992. Published in 1993

as Lecture Notes in Computer Science, Number 663.

Hu, A. J. and Dill, D. L., “Efficient verification with BDDs using implicitly con-
joined invariants,” In Computer Aided Verification (CAV): Fifth International
Conference, Springer-Verlag, 1993. Published in 1993 as Lecture Notes in Com-

puter Science, Number 697.

Hu, A. J., and Dill, D. L., “Reducing BDD size by exploiting functional depen-
dencies,” Proceedings of Design Automation Conference (DAC), pp. 266-271,
1993.

Hu, A. J., “Techniques for efficient formal verification using binary decision di-
agrams,” Ph.D. thesis, Stanford University, 1996.

Hu, A. J., “Formal hardware verification with BDDs: An introduction,” IEEE
Pacific Rim Conference on Communications, Computers and Signal Processing,
pp. 677-682, 1997.

Intel Corporation, http://www.intel.com.

Kurshan, R. P., “Timing verification by successive approximation,” US Patent
US05483470.

Kuskin, J., Ofelt, D., Heinrich, M., Heinlein, J., Simoni, R., Gharachorloo, K.,
Chapin, J., Nakahira, D., Baxter, J., Horowitz, M., Gupta, A., Rosenblum, M.,
and Hennessy, J., “The Stanford FLASH multiprocessor,” Proceedings of the
21st International Symposium on Computer Architecture, pp. 301-313, April
1994.

Lee, C. Y., “Representation of switching circuits by binary-decision programs,”
Bell System Technical Journal, vol. 38, no. 4, pp. 985-999, July 1959.

136

[47]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

BIBLIOGRAPHY

Lee, W., Pardo, A., Jang, J., Hachtel, G., and Somenzi, F., “Tearing based auto-
matic abstraction for CTL model checking,” Proceedings of IEEE International
Conference on Computer Aided Design (ICCAD), pp. 76-81, 1996.

Long, D. E., As of this writing, a current copy of David Long’s BDD package
is available via anonymous ftp from emc.cs.cmu.edu, directory pub/bdd, file

bdd.lib.tar.Z.

Long, D. E., “Model checking, abstraction and compositional reasoning,” Ph.D.

thesis, Carnegie Mellon University, 1993.

Malik, S., Wang, A., Brayton, R. K. and Sangiovanni-Vincentelli, A., “Logic
verification using binary decision diagrams in a logic synthesis environment,”
Proceedings of IEEE International Conference on Computer-Aided Design (IC-
CAD), pp. 6-9, 1988.

McMillan, K. L., “Symbolic model checking,” Kluwer Academic Publishers, 1993.

McMillan, K. L., “A conjunctively decomposed Boolean representation for sym-
bolic model checking,” Proceedings of Computer Aided Verification (CAV), pp.
13-25, 1996.

Moon, I, Jang, J, Hachtel G. D., Somenzi, F., Yuan. J., and Pixley, C., “Ap-
proximate reachability don’t cares for CTL model checking,” Proceedings of
IEEE International Conference on Computer Aided Design (ICCAD), pp. 351-

358, 1998.

Moon, I, Somenzi, F., Kukula, J. H, and Shiple, T., “Least fixpoint approxima-
tions for reachability analysis,” Proceedings of IEEE International Conference
on Computer Aided Design (ICCAD), pp. 41-44, 1999.

Moore, G. E., “Cramming more components onto integrated circuits,” Electron-

ics Magazine, vol. 38, no. 8, pp. 114-117, April 19, 1965.

Moore, G. E., “Lithography and the future of Moore’s law,” Proceedings of the
SPIE, vol. 2440, pp. 2-17, February 20, 1995.

BIBLIOGRAPHY 137

[57] “PCI verification design example with specification,”
http://verify.stanford.edu/pciExample.html. (to appear).

[58] Pnueli, A., “The temporal logic of programs,” 18th IEEE Symposium on Foun-
dations of Computer Science, pp. 46-57, IEEE Computer Society Press, 1977.

[59] Ravi, K., and Somenzi, F. “High-density reachability analysis,” Proceedings of
IEEE International Conference on Computer Aided Design (ICCAD), pp. 154-
158, 1995.

[60] Ravi, K., McMillan, K. L., Shiple, T. R., and Somenzi, F., “Approximation and
decomposition of binary decision diagrams,” Proceedings of Design Automation
Conference (DAC), pp. 445-450, 1998.

[61] Ranjan, R. K., Aziz, A., Brayton, R. K., Pleisser, B. and Pixley, C., “Efficient
BDD algorithms for FSM synthesis and verification,” Proceedings of IEEE/ACM
International Workshop on Logic Synthesis (IWLS), May 1995.

[62] Shimizu, K., Dill, D., and Hu, A. J., “Monitor based formal specification of
PCI,” (to appear).

[63] Thomas, D. E., and Moorby, P. R., “The Verilog hardware description language,”
Kluwer Academic Publishers, 1998.

[64] Thomas, W., “Automata on infinite objects,” Handbook of Theoretical Com-
puter Science, pp. 165-191, 1990.

[65] Toshiba Corporation, http://www.toshiba.com.

[66] Touati, H. J., Savoj, H., Lin, B., Brayton, R. K., and Sangiovanni-Vincentelli, A.,
“Implicit state enumeration of finite state machines using BDDs,” Proceedings
of IEEE International Conference on Computer Aided Design (ICCAD), pp. 130-
133, 1990.

[67] Yang, B, Simmons, R., Bryant, R. E., and Hallaron, D, R., “Optimizing sym-
bolic model checking for constraint-rich models,” Proceedings of Computer Aided
Verification (CAV), pp. 328-340, 1999.

138 BIBLIOGRAPHY

[68] Yang, C. H., and Dill, D., “Validation with guided search of the state space,”
Proceedings of the 35th Design Automation Conference (DAC), pp. 599-604,
1998.

[69] Yuan, J., Shen, J., Abraham, J. and Aziz, A., “On combining formal and informal
verification,” Proceedings of the Computer Aided Verification (CAV), pp. 376-

387, 1997.

